# Minimally Invasive Cardiac Surgery:

# Overview and Interesting Case

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital Yangsan, Korea

# Robotic and MICS train at ECU





# Robotic and MICS train at ECU





Minimal; How small is?

#### Avoiding Sternotomy

#### Less than 8cm skin incision

### Peripheral cannulation



#### Lower Sternotomy

Lower midline skin incision

10 cm

Midsternal & extension to Rt. 2<sup>nd</sup> ICS

Cannulation & Cardioplegia ; Conventional way





## Lower Sternotomy







# **Right submammary incision**

Right submammary fold

Nipple to ant. axillary line

4<sup>th</sup> ICS

Cannulation & Cardioplegia

; Conventional way





# Right submammary incision













# AESOP vs da Vinci



# Robotic MVP using daVinci





# Comparison of wound



PUSAN NATIONAL UNIVERSITY YANGSAN HOSP

# Ix of MICS

- All MV, TV surgery: MVP, MVR, TVP, TVR
  Maze
- Cardiac tumor; eg> LA myxoma, LV mass
- Adult congenital cardiac defect
  - ASD, Partial AVSD,
  - VSD; SA and PM type
  - Coronary artery fistula





# Robotic CABG

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital Yangsan, Korea

## CABG; Recent innovations

Complete arterial revascularization ; BITA, RA, RGEA

•OPCAB ; off pump CABG

•MIDCAB ; minimally invasive direct CABG

Port access surgery in CABG ; not in Korea

Robot assisted CABG



## Options

#### Median Sternotomy





#### Anterolateral Thoracotomy



#### Port Incision



# MIDCAB using AESOP® 3000 & Starfish® Heart Positioner



Making CABG Less-invasive





LIMA to LAD Anastomosis with Octopus<sup>@</sup>4 Tissue Stabilizer



# Robotic CAB: IMA harvesting





## Port set up for TECAB



- 1 Camera
- 2 Right instrument
- 3 Left instrument
- 4a Endoscopic stabilizer (LAD, DX)
- 4b Endoscopic stabilizer (LAD, DX, RAMUS, OM)
- Courtesy of Dr. Sudhir P. Srivastava M.D.



Courtesy of Intuitive Surgical



## ITA Harvest with da Vinci

- Pedicle; with veins
  - Rt. arm; spatula cautery
  - Lt. arm; bipolar cuatery forceps

- Skeletonized; without veins
  - Rt. arm; spatula cautery + endo-clip applier
  - Lt. arm; micro-forceps







### Anastomosis of Robotic TECAB

#### -Continuous suture with Gore-Tex 7-0





## Anastomosis of Robotic TECAB

-Interrupted suture with U-clip (S-18)





## Anastomosis of Robotic TECAB

#### -Using device; Cardica Flex A



# Minimally Invasive Mitral Valve Repair

# for Marfan's Syndrome Patient

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital <u>Yangsan, Korea</u>

## Case Presentation

- 31/M, Office worker
  - C.C.; Dyspnea (NYHA II~III)
- Diagnosis of Marfan's syndrome :
  - > Ocular: lens dislocation, high myopia
  - Skeletal: 193cm / 82Kg, mild scoliosis
- Brief Hx;
  - > 06' MR +3 detect, annual echo f/u
  - Recent aggravation of DOE d/t AF







with RVR, MR aggravation

# Radiological findings



## Preoperative Echo



> AF with RVR

- > EF: 35%, LVIDs/d; 59/70
- Giant LA(67mm), no thrombi
- LVOT/sinus/Asc ao; 24/36/36
- > AV; n'l, no AR

> TR: I-II TR Vmax; 2.7m/s



## Preoperative Echo





- Severe MR
- > Bileaflet prolapse
- PMVL >> AMVL
- Diffuse prolapse
- > Annulus dilatation
- > Multiple MR jet at P2, P3



# **OP** Findings

Huge LA and no thrombus at LAA

> Aorta: 35mm size mild enlarged, thin wall

- > MV Severe annular dilatation
- > Thickened and elongated chordae at all area

> PMVL; 3.5cm height, flail at P2, P3 scallop

> AMVL: 4cm height, diffuse prolapse A1, A2, A3



## Sliding annuloplasty

#### 말판 중후군 환자에서 승모판막 역류의 교정을 위해 시행된 슬라이드 판막륜 성형술 및 판막륜 주름 성형술

Annular Plication Techn in a Mar

Hyoung-Gon Je, M.I

제

Sliding annuloplasty has been used for mitra resection to avoid systolic anterior motion of the of successful mitral valve repair with using the extensive quadrangular resection was also done redundant leaflet and a severely dilated annulus.



Fig. 1. (A) Extensive undercutting of PMVL. (B) Annulus plicating suture and tie down. (C) 2<sup>nd</sup>-line sutures for ring annuloplasty and height reduction of PMVL. (D) Reattach PMVL to posterior annulus and extensive Q-resection of lateral and middle scallop of PMVL. (E) Lateral commissural repair and chorda transfer from PMVL to AMVL. (F) Operative finding after ring annuloplasty with physio-ring.



# P2 Folding plasty





# Postoperative Echo







PNU

양산부산대학교병원

# ECG; before and after Maze



ORNSR
 LA contraction at
 MV inflow and TDI
 E/A: 73/56 cm/s
 No AF recur during

postop 6m



### Postoperative Course

- Post op TTE
  - ➢ EF: 50%, NSR
  - > LA; 46, LVIDs/d; 48/65
  - > MR; trivial, mean PG; 1.5mmHg
- Discharge at POD#8
- Good condition up to 6m





# MR of Marfan's synd

#### -Adams et. al. JTCS 2003 -Bhudia et. al. ATS 2006

- MR; 60-80% incidence
- > MR often precedes AR
- ➢ 3+ ~ 4+ MR; 12.5% at 30Yr
- Anatomical feature;
  - Excess tissue, longer leaflet
  - > Thickened leaflets
  - Severe annulus dilation
  - Frequent bileaflet pathology







# Both coronary artery

# to pulmonary artery fistula

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital Yangsan, Korea

## Case Presentation

- 53/M, Government officer
   C.C.: Cardiac murmur LSB
- > CAG at local hosital
- > Pre op evaluation
  - >Echo: normal
  - ≻Qp/Qs: 1.33





## Pre op CAG



[EI Import]Cardiac Coronary 15fps 2009-04-16/10:57:55

PNU 양산부산대학교병원 PUSAN NATIONAL UNIVERSITY

50mm 2 Compression 2:

Z 100%

# Pre op CT scan



W 256 ۲۹۵۵ - ۲29 ۲/427/1978 ۲/427/1978 Segmenter Compression 4:1



# Intraoperative findings





# Post op CT scan





# Post 3M OPD F/U





# VSD(SA type) pericardial patch

# closure with MICS

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital Yangsan, Korea

### Case Presentation

- > 25/F, nurse at local H'
  > C.C.; Cardiac murmur LSB
  > Pre op TTE
  > Subarterial VSD; 11mm
  - ➢ Mild AR
  - > No other abnormality







LAO/RAO CRAN/CAUD







## Intraoperative findings





### Postoperative Course

- > CPB/ACC; 108/49min
- Extubation at OR
- > ICU stay: 1d, no transfusion
- Post op TTE at POD #2
  - No residual shunt, Mild AR
- Discharge at POD#2
- Good condition up to 3m

### Post op 1M



 $\Leftrightarrow$ 

# LV hemangima excision

# with MICS

#### Hyung Gon Je, MD, PhD.

Dept. of Thoracic and Cardiovascular surgery Pusan National University Yangsan Hospital Yangsan, Korea

### Case Presentation

- > 60/M, Incidental LV mass
- Previous healthy
- > Pre op CAG
  - > Normal coronary artery
  - > delayed staining LV mass
     (feeding v. ; RCA RV branch)





# Pre op TTE & CT





## Pre op CT angio



#### Moderate stenosis at

#### proximal LAD (54%)

#### > R/O Benign mass in LV



## Pre op CAG





# 3D TEE vs. OP finding









# Op findings vs TEE 3D image







# Pathologic findings



> Large ectatic, endothelial-lined,

vascular channels (H&E,×40)

Connective tissue & lining endothelial cells (H&E, ×200)



### Postoperative Course

- > CPB/ACC; 71/30min
- > Extubation at OR
- > ICU stay: 1d, no transfusion
- Post op TTE at POD #2
  - No residual mass
- Discharge; POD#6 d/t money
- Good condition up to 2mo.



