Value of MSCT in CTO PCI

Jin-Ho Choi, MD, PhD

Department of Internal Medicine, Emergency Medicine

What's the role of coronary CT before CTO PCI?

CT tells **something** more than CAG!

Invasive CAG - predictors of CTO PCI success

Favorable

Tapered stump

Unfavorable

No stump

Functional (or short) occlusion

Complete and long occlusion

Not at branching site

At branching site (= no stump, ostial location)

No bridging collaterals

Bridging collaterals

Tortuous vessel

Severe calcification

... and, occlusion length

Poor distal vessel ...

CTO - Information available from coronary CT

Modified from Feyter, Niemann, EuroPCR 2011

CT

- 1. Relatively short CTO
- 2. Focal calcification at myocardial side of CTO entry
- 3. Ostium is relatively small and upward → Judkin Rt GC and largebore GC would be NOT adequate

KJH 19444874

PCI

Guiding catheter: XB 2.0 6Fr.

The guidewire at outer curvature could enter distal true lumen

Remodeling pattern of CTO plaque

Positive remodeling

 $CTO \leq 1 yr$

35.4%

Neutral

7.6%

Negative remodeling

57.0%

78.5%

Choi, Circ J 2011

3D radiologic density analysis of CT

Beyond anatomical stenosis: Evaluation of myocardial ischemia by CT

Myocardial perfusion

Koo, JACC 2011

Choi, JACC Img, in press Chow, JACC 2010 Steigner, Circ Img 2009

Attenuation gradient

Concept of CT-gradient in CTO

Major epicardial coronary artery CT gradient

Significant stenosis

CTO with intra-arterial anterograde collateral flow

Choi, JACC Img in press

CTO with inter-arterial anterograde collateral flow

CTO with inter-arterial

Donor vss.

Collateral vessels

CT-gradient in CTO

Choi, JACC Img in press

CT-gradient shows the degree and direction of collateral flow

Rentrop collateral flow classification

Anterograde vs. retrograde collateral flow

Choi, in submission

Prediction of CTO PCI success by pre-procedural CT

	N of CTO	Success (%)	CT predictors	Independent predictors
Mollet, Am J Cardiol 2005	45	53%	Calcification > 15 mm Blunt stump	Calcification > 15 mm Blunt stump
Soon, J Interv Cardiol 2007	43	56%	Transluminal calcification > 50% Blunt stump (by CAG)	
Otsuka, Int J Cariovasc Imaging 2008	26	100%	None (100% success)	
Cho, Int J Cardiol 2009	72	76%	Length Regional calcium scores % Ca area/CSA	% Ca area/CSA
Garcia, Eurointervention 2009 (CTTO registry)	139	63%	CSA > 50% Angulation Calcium at entry > 15 mm	
Ehara, J Inv Cardiol 2009	110	85%	Bending, Shrinkage, Calcium	
Choi, Circ J 2010	186	77%	Length > 18 mm CTO > 1 year Density> 139 HU	
Araki, EuroPCR 2011	114	82%	Intramural calc	Intramural calc
Jen, Int J Cardiol 2010	82	81%	Calcium length ration > 0.5 Calcium at proxiand distal stump	

Most accepted predictors: severity of calcification and lesion length

CTO PCI with or without pre-PCI CT

Contents lists available at ScienceDirect

International Journal of Cardiology

Effect of preoperative evaluation by multidetector computed tomography in percutaneous coronary interventions of chronic total occlusions

Koji Ueno ^a, Akio Kawamura ^{a,*}, Takeshi Onizuka ^a, Takashi Kawakami ^a, Yuji Nagatomo ^a, Kentaro Hayashida ^a, Shinsuke Yuasa ^a, Yuichiro Maekawa ^a, Toshihisa Anzai ^a, Masahiro Jinzaki ^b, Sachio Kuribayashi ^b, Satoshi Ogawa ^a

	CT (+)	CT (-)	P-value
N	40	60	
Success (%)	77.5%	80.0%	NS
Complication (%)	7.5%	23.3%	0.039
coronary perforation	0%	10%	0.039
AMI	5%	12%	NS

Ueno, Int J Cardiol 2010

a Division of Cardiology, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

b Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan

CTO PCI with or without pre-PCI CT

e-CTO: Korean multicenter CTO registry

N=3436 (age 63+/-11 year, male 74%), unadjusted data

Choi and e-CTO investigators, abstract submitted to KSC 2011

Summary

- 1. CT can evaluate detailed anatomy of whole vessel, lesion characteristics (especially calcification), and physiological function of collaterals and myocardium.
- 2. CT can predict procedural success mainly based on the severity of calcification and lesion length.
- 3. However, these potential values of CT has not been reflected in real-world clinical practice (e.g. CTO PCI success). We need more sophisticated investigation.