
Gene and genomes in Coronary artery disease

Yangsoo Jang Yonsei University College of Medicine Cardiovascular Center Division of Cardiology

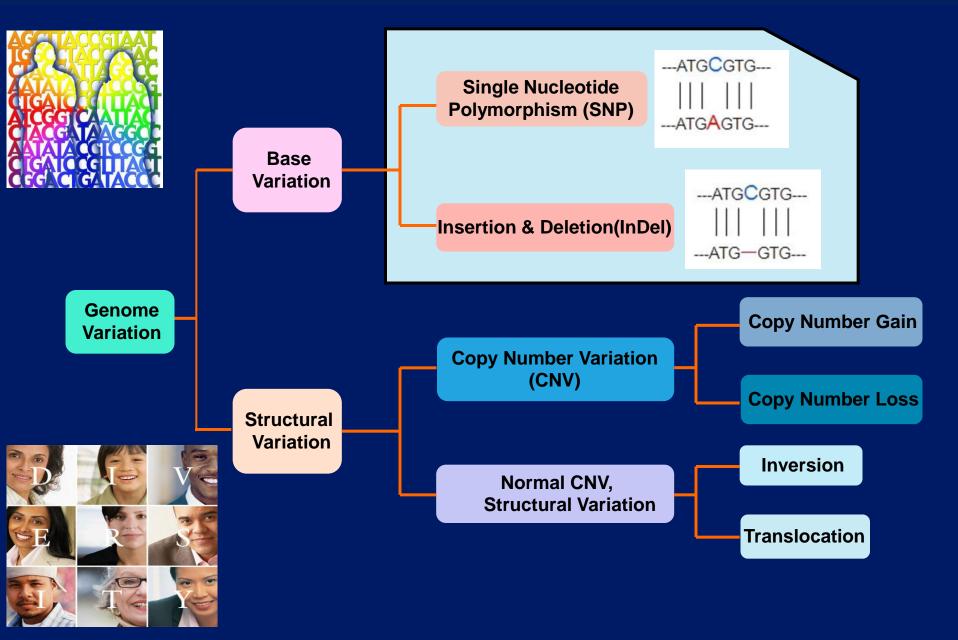
허혈성 심장질환 환자들에서의 주요 위험요인 동반개수

low risk by conventional Risk factors

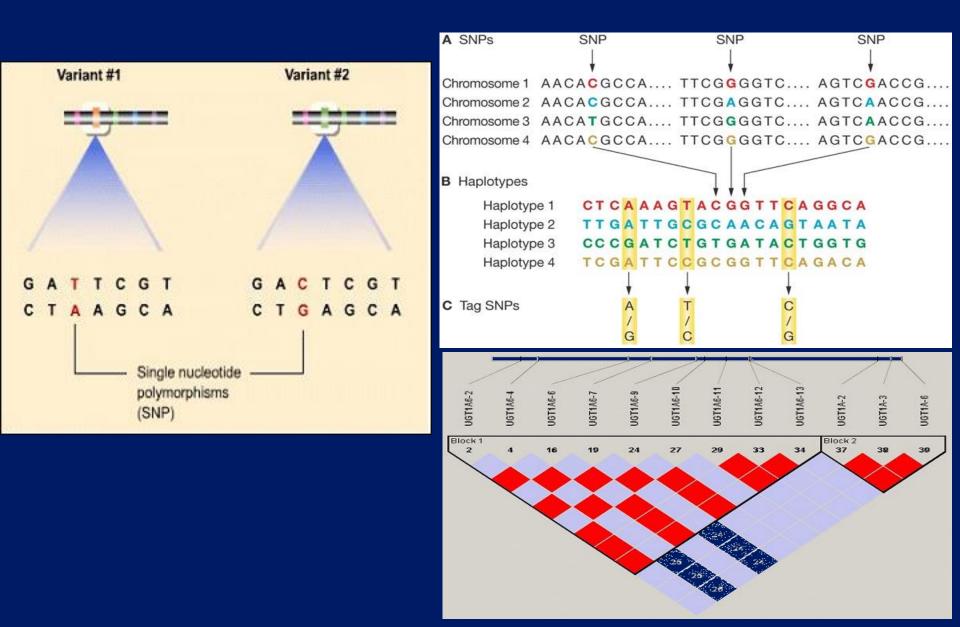
Khot UN et al. JAMA 2003; 290: 898-904

Genetic basis of CHD

 Twin studies indicate that heritability of CVD is 30-60% (*N Engl J Med 1994;330:1041*)

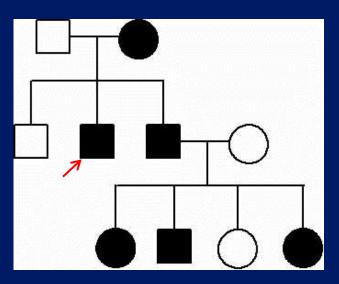

 Heritability as high as 63% for premature MI (Circulation 1980;61:503)

 History of premature death of a biological parent(<50 years) was associated with 4.5 fold increase in mortality for adopted offsprings → Risk not increased in adopted children with history of premature CAD in foster parents (*N Engl J Med 1988;318:727*)


Human Genome Structure

	chr #	Size (Mb)	Genes #
genome	1	250	3511
cell	2	243	2368
chromosomes	3	198	1926
genes>	4	191	1444
Genes contain	5	181	1633
instructions	6	171	2057
DNA CARACTER STORE	7	159	1882
proteins	8	146	1315
	9	141	1534
proteins	10	136	1391
	11	135	2168
	12	134	1714
Proteins act alone or in complexes to	13	115	720
perform many cellular	14	107	1532
functions	15	103	1249
From Genes to Proteins	16	90	1326
	17	81	1773
	18	78	557
	19	59	2066
	20	63	891
Total genomic size = 3,106 Mb	21	48	450
Total number of genes = 36,464 genes	22	51	855
	X	155	1672
Homo sapiens Build 37.3 (Oct. 5, 2011)	<u> </u>	59	429

Human Genome Variations



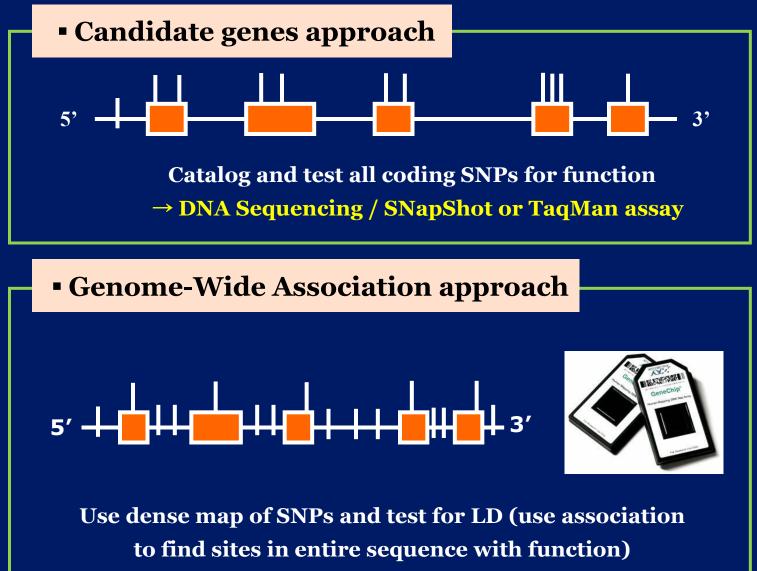
SNP, Haplotype and TagSNPs

Strategies for Disease Gene Identification

Linkage Analysis (Family)

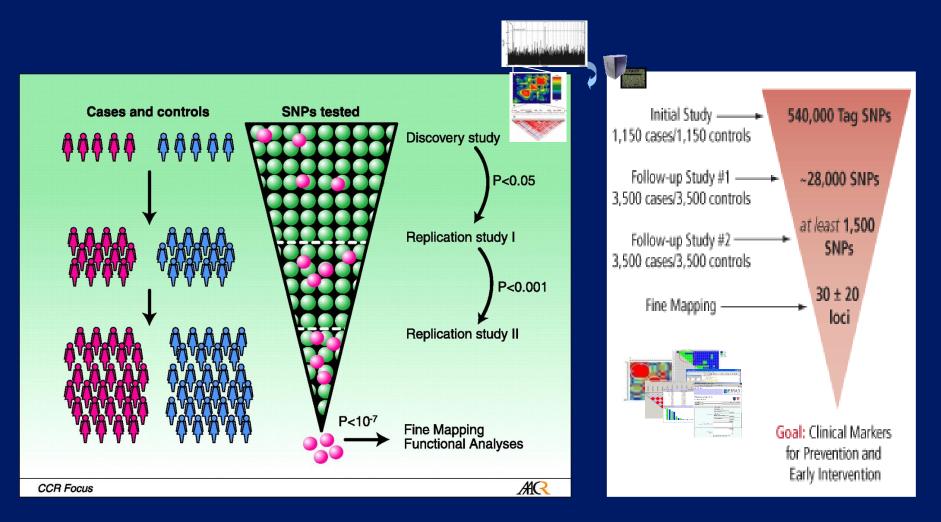
- Single gene
- Mendelian inheritance
- Rare, but high penetrance
- ~300-400 STR markers

Association Study (Population)

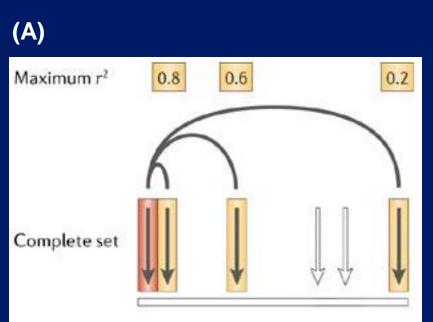

- Polygenic (also G X E)
- Complex inheritance
- Common
- Multiple polymorphic SNP markers

Approaches to determine susceptibility genes

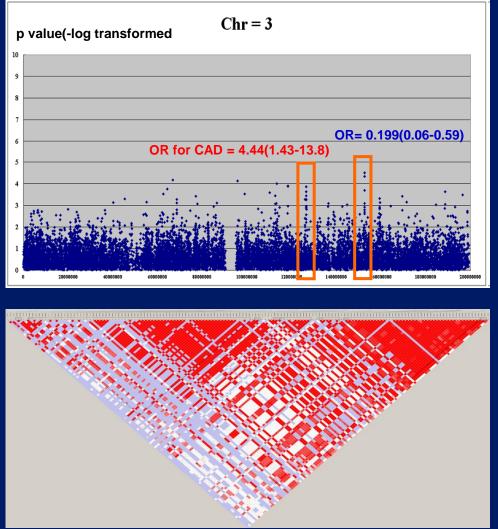
Candidate gene approach


Analytic Tools of Association Study

→ Affymetrix GeneChip / Illumina GeneChip


Genome-Wide Association Study (GWAS)

• GWAS are used to identify common genetic factors (SNP, Ins/del) that influence health and disease.



General GWAS strategy for common complex disease

Linkage disequilibrium (LD) block & Association analysis

Copyright © 2006 Nature Publishing Group Nature Reviews | Genetics **(**B**)**

In 2007: Discovery of 9p21 and the watershed moment for cardiovascular genetics

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction Anna Helgadottir, et al. Science 316, 1491 (2007); DOI: 10.1126/science.1142842

A Common Allele on Chromosome 9 Associated with Coronary Heart Disease Ruth McPherson, *et al. Science* **316**, 1488 (2007); DOI: 10.1126/science.1142447

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 2, 2007

VOL. 357 NO. 5

Genomewide Association Analysis of Coronary Artery Disease

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

AUGUST 2, 2007

VOL. 357 NO. 5

Odds Ratio

for Risk Allele

(95% CI)

Population

Attributable

Fraction

0.10

0.11

0.22

P Value

1.19×10⁻⁹

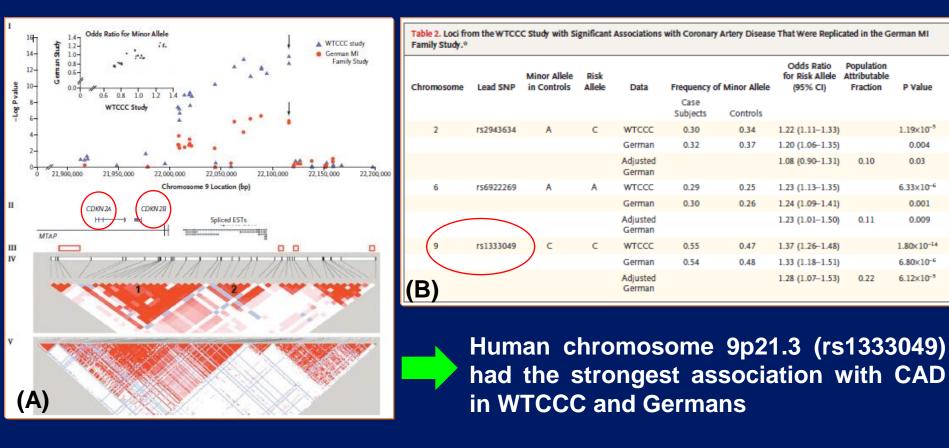
0.004

0.03

6.33×10-6

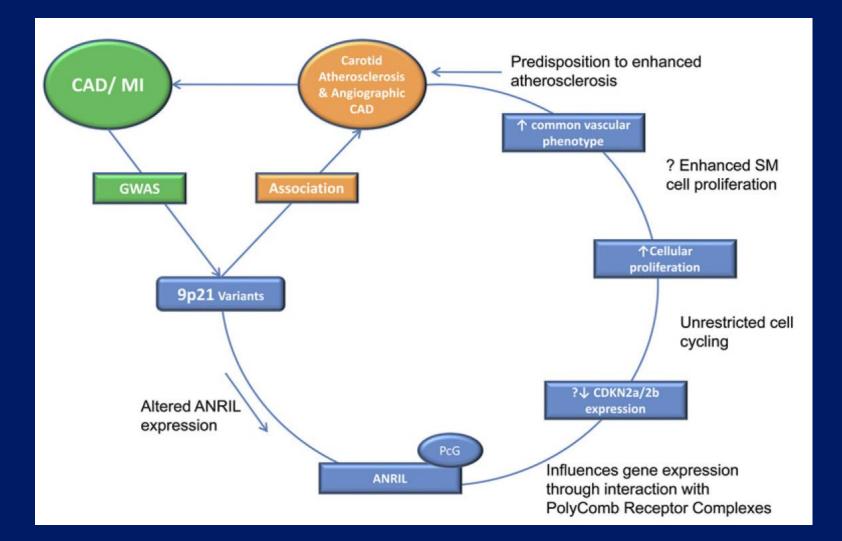
0.001

0.009


1.80×10-14

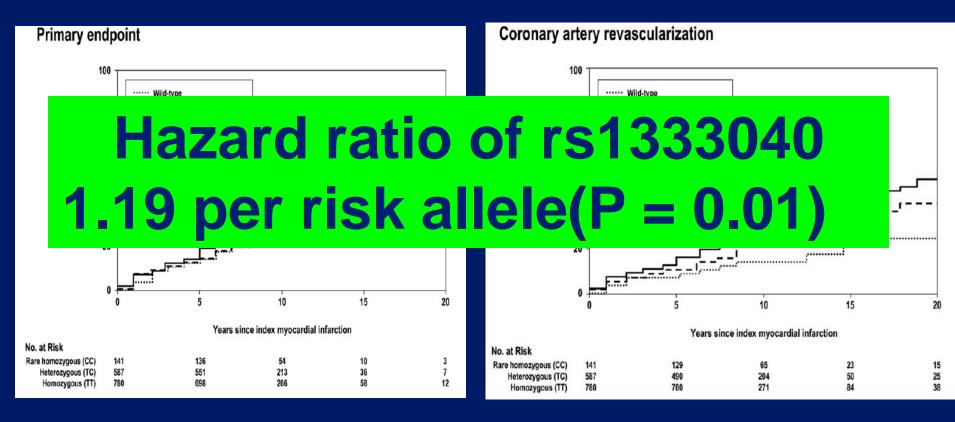
6.80×10-6

6.12×10-5

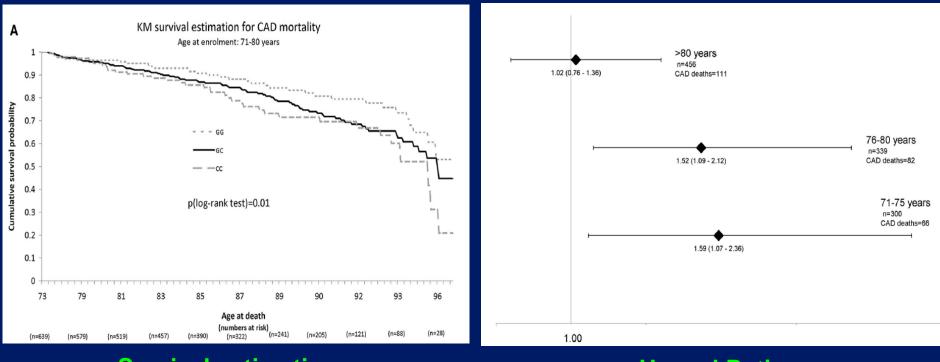

Genomewide Association Analysis of Coronary Artery Disease

Nilesh J. Samani, F.Med.Sci., Jeanette Erdmann, Ph.D., Alistair S. Hall, F.R.C.P., Christian Hengstenberg, M.D., Massimo Mangino, Ph.D., Bjoern Mayer, M.D., Richard J. Dixon, Ph.D., Thomas Meitinger, M.D., Peter Braund, M.Sc., H.-Erich Wichmann, M.D., Jennifer H. Barrett, Ph.D., Inke R. König, Ph.D., Suzanne E. Stevens, M.Sc., Silke Szymczak, M.Sc., David-Alexandre Tregouet, Ph.D., Mark M. Iles, Ph.D., Friedrich Pahlke, M.Sc., Helen Pollard, M.Sc., Wolfgang Lieb, M.D., Francois Cambien, M.D., Marcus Fischer, M.D., Willem Ouwehand, F.R.C.Path., Stefan Blankenberg, M.D., Anthony J. Balmforth, Ph.D., Andrea Baessler, M.D., Stephen G. Ball, F.R.C.P., Tim M. Strom, M.D., Ingrid Brænne, M.Sc., Christian Gieger, Ph.D., Panos Deloukas, Ph.D., Martin D. Tobin, M.F.P.H.M., Andreas Ziegler, Ph.D., John R. Thompson, Ph.D., and Heribert Schunkert, M.D., for the WTCCC and the Cardiogenics Consortium*

Samani NJ et al. NEJM 2007;357:443-453


Role of 9p21 in the pathogenesis of CAD

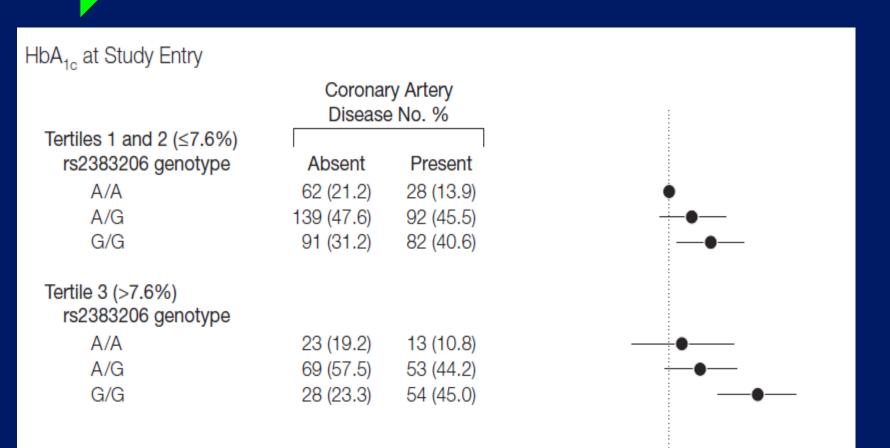
Patel RS et al. Heart 2011;97:1463-1473


Influence of 9p21.3 Genetic Variants on Clinical and Angiographic Outcomes in Early-Onset Myocardial Infarction

Ardissino D et al. J Am Coll Cardiol 2011;58:426-434

The Coronary Artery Disease–Associated 9p21 Variant and Later Life 20-Year Survival to Cohort Extinction

Ambarish Dutta, MBBS, MPH; William Henley, PhD; Iain A. Lang, PhD; Anna Murray, PhD; Jack Guralnik, MD, PhD; Robert B. Wallace, MD, MSc; David Melzer, MBBCh, PhD



Dutta A et al. Circ Cardiovasc Genet 2011;4:542-548

Survival estimation According to presence of C allele Hazard Ratio According to presence of C allele

Interaction of 9p21 with diabetes and CVD

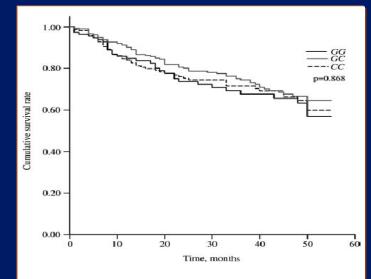
Case Control study of 734 type 2 Diabetics(322 CAD, 412 non CAD)

Doria A et al. JAMA 2008;300(20)

Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population

Fan Wang^{1,12}, Cheng-Qi Xu^{1,12}, Qing He^{2,12}, Jian-Ping Cai^{2,12}, Xiu-Chun Li^{1,12}, Dan Wang^{1,12}, Xin Xiong^{1,12}, Yu-Hua Liao^{3,12}, Qiu-Tang Zeng^{3,12}, Yan-Zong Yang^{4,12}, Xiang Cheng^{3,12}, Cong Li¹, Rong Yang¹, Chu-Chu Wang¹, Gang Wu⁵, Qiu-Lun Lu¹, Ying Bai¹, Yu-Feng Huang¹, Dan Yin¹, Qing Yang¹, Xiao-Jing Wang¹, Da-Peng Dai², Rong-Feng Zhang⁴, Jing Wan⁶, Jiang-Hua Ren⁶, Si-Si Li¹, Yuan-Yuan Zhao¹, Fen-Fen Fu¹, Yuan Huang¹, Qing-Xian Li⁷, Sheng-Wei Shi⁷, Nan Lin⁷, Zhen-Wei Pan⁸, Yue Li⁹, Bo Yu¹⁰, Yan-Xia Wu¹¹, Yu-He Ke¹¹, Jian Lei¹¹, Nan Wang¹, Chun-Yan Luo¹, Li-Ying Ji¹, Lian-Jun Gao⁴, Lei Li¹, Hui Liu¹, Er-Wen Huang¹, Jin Cui¹, Na Jia², Xiang Ren¹, Hui Li¹, Tie Ke¹, Xian-Qin Zhang¹, Jing-Yu Liu¹, Mu-Gen Liu¹, Hao Xia⁵, Bo Yang⁵, Li-Song Shi¹, Yun-Long Xia⁴, Xin Tu¹ & Qing K Wang¹

Identification of significant association between 2 SNPs and CAD in Chinese


Chr.	SNP	Gene (nearby)	Risk allele	OR	Р	<i>vs.</i> KOR/EUR
6p24.1	rs6903956	C6orf105	А	1.71	5.0X10 ⁻³	Ν
9p21.3	rs1333048	CDKN2A/2 B	G	1.29	4.0X10 ⁻³	Y

The function of *C6orf105* gene is unknown, but Wang et al. suggested that decreased expression of *C6orf105* gene may be a possible pathogenic cause of CAD.

Chromosome 9p21 polymorphism is associated with myocardial infarction but not with clinical outcome in Han Chinese

Table 4 Association of rs1333049 with clinical outcome after MI.

	<i>GG</i> (n=99)	<i>GC</i> (n=265)	<i>CC</i> (n = 156)	p-Value
Treatment				
Primary PCI, %	78.8	80.0	85.3	0.314
Aspirin, %	90.9	94.3	91.7	0.410
ACEI or ARB, %	67.7	64.9	62.8	0.730
β-Blocker, %	45.5	49.1	48.7	0.822
Statins, %	54.5	56.2	51.6	0.657
Duration, months	28±18	30±17	29 ± 17	0.685
Adverse events				
Rehospitalization, n	1±1	1±1	1±1	0.263
Death, %	2.0	1.1	2.6	0.537
Non-fatal MI, %	5.1	1.9	3.2	0.265
Combined MACE, %	48.8	49.7	51.2	0.940

Figure 1 Kaplan-Meier survival plot by rs1333049. Cumulative survival rate was similar among the *GG* (n=99), *GC* (n=265), and *CC* (n=156) genotypes. rs1333049 is associated with risk for mi, but not with post-MI prognosis in Han Chinese

Peng WH et al. CCLM 2009;47:917-22

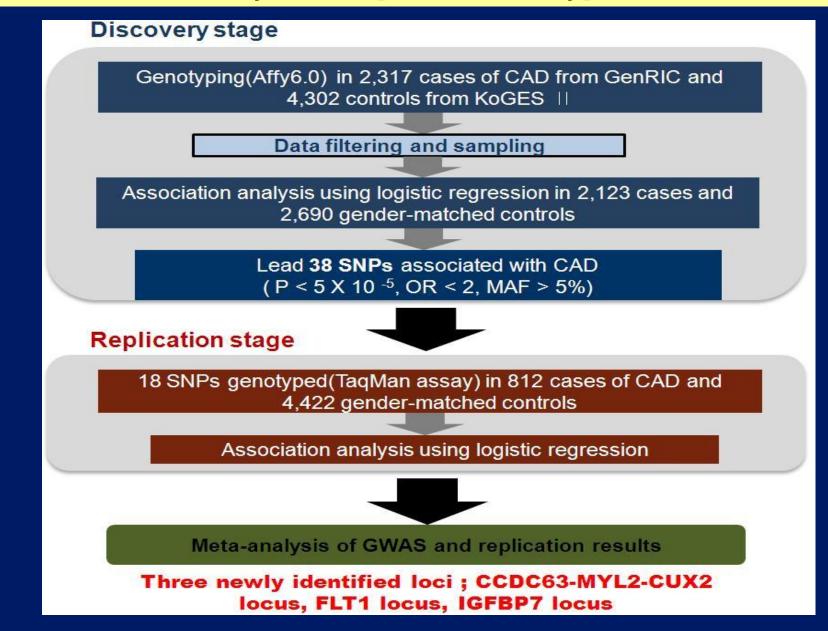
Four SNPs on Chromosome 9p21 in a South Korean Population Implicate a Genetic Locus That Confers High Cross-Race Risk for Development of Coronary Artery Disease

Gong-Qing Shen, Lin Li, Shaoqi Rao, Kalil G. Abdullah, Ji Min Ban, Bok-Soo Lee, Jeong Euy Park, Qing K. Wang

Table 2. Allelic Association of Four SNPs on Chromosome 9p21 with CAD in a South Korean Population

Frequency								
SNP	Allele	Control	Case	<i>P</i> -HW*	OR (95% CI)†	P-ob‡	P-adj§	P-emp¶
rs10757274	G	0.439	0.503	0.37	1.29 (1.06-1.58)	0.011	0.010	0.013
rs2383206	G	0.441	0.506	0.88	1.30 (1.06-1.58)	0.011	0.024	0.011
rs2383207	G	0.647	0.707	0.59	1.32 (1.06-1.63)	0.011	0.001	0.011
rs10757278	G	0.457	0.521	0.80	1.29 (1.06-1.57)	0.011	0.001	0.013

*P-HW, P value for Hardy-Weinberg disequilibrium analysis. †OR, odds ratio, CI, confidence interval. ‡P-obs, uncorrected P value. §P-adj, P value obtained after adjustment for gender, age, hypertension, and diabetes. ¶P-emp, permutation P value calculated using 100 000 Monte Carlo simulations.


Table. Association between haploypes with CAD in Koreans

Haplotype	Control (%)	Case (%)	OR (95% CI)*	P-obs†	P-emp‡
GGGG	42.2	48.1	1.28 (1.04-1.56)	0.017	0.019
AAAA	35.3	29.2	0.75 (0.60-0.92)	0.007	0.007
AAGA	16.8	15.9	0.93 (0.71-1.22)	0.612	0.633
AAGG	2.5	2.8	1.16 (0.62-2.17)	0.651	0.754
GAGA	1.1	1.3	1.27 (0.49-3.26)	0.619	0.657
AGGA	1.0	1.1	1.33 (0.48-3.72)	0.583	0.634

This study provided solid evidence that the 4 SNPs on 9p21 are associated with CAD in a South Koreans

Shon GQ *et al*. ATVB 2008;28

Schematic Overview of Identification of CAD Causative SNPs by GWAS [GenRIC Study]

Results of a meta-analysis for SNPs identified from both the GWAS and the replication cohorts

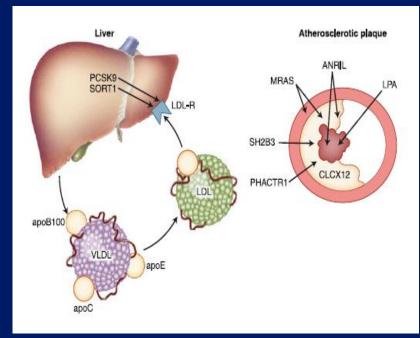
				GWAS - Korea			Replication - Japan			Combined analysis				
SNP	Chromoson	ne Gene	Func	Allele	N	OR	Р	Allel e	N	OR	Р	OR	р	het.(<i>P</i>)
Previous p	Previous publications													
rs4537545	1q21.3e	IL6R	i	т	4735	0.8356	2.39E-05	т	5234	0.8936	0.04297	0.8659	4.74E-05	0.3376
rs7588415	2p24.1c	APOB		Α	4778	0.7578	2.74E-05	Α	5233	0.8232	0.02587	0.7914	2.47E-05	0.4498
rs1333049	9p21.3c			С	4770	1.263	3.30E-08	С	5000	1.47	1.8E-14			
New identi	New identified loci													
rs1111782	9p21.2a	TEK	i	А	4716	0.8101	7.32E-07	Т	5234	0.952	0.3684	0.8816	3.46E-04	0.0198
rs12114277	7 8q22.3b	UBR5	i	А	4674	0.8082	8.43E-07	А	5233	1.016	0.764	0.912	8.70E-03	9.00E-04
rs219822	7q22.1a	TRRAP	i	А	4783	1.229	9.64E-07	А	5232	1.068	0.2277	1.1422	1.35E-04	4.12E-02
rs12705702	2 7q31.1b			Т	4781	0.8263	4.17E-06	G	5232	1.039	0.4792	0.9314	4.06E-02	8.00E-04
rs1163072	10q24.33			т	4780	1.203	1.04E-05	G	5231	1.051	0.3571	1.1208	9.86E-04	0.0487
rs41391154	4 3p26.1a	GRM7	i	т	4775	0.7166	1.24E-05	Т	5233	0.9898	0.9076	0.8487	5.05E-03	0.0055
rs886126	12q24.11d	CUX2	i	С	4756	0.8244	1.31E-05	С	5232	0.9654	5.45E-01	0.8958	2.92E-03	0.0309
rs10012505	5 4q34.1b	GALNT17	i	G	4662	0.7661	1.67E-05	С	5233	0.9422	0.4594	0.8547	2.35E-03	0.0416
rs2122149	4q13.1a			А	4674	1.277	1.87E-05	А	5231	1.03	0.6516	1.14	2.96E-03	0.0138
rs9944810	18q21.31	ALPK2	cn	С	4783	0.8326	2.08E-05	С	5234	0.9488	0.3364	0.8914	1.09E-03	0.0603
SNP1	12	MYL2	i	С	4762	1.255	2.13E-05	G	5232	1.262	9.85E-05	1.2586	1.13E-08	0.9446
SNP2	13	FLT1	i	С	4789	1.192	2.34E-05	G	5231	1.148	1.09E-02	1.1688	6.35E-06	0.5817
SNP3	4	IGFBP7	i	G	4781	1.187	3.27E-05	С	5233	1.116	0.04156	1.1491	4.91E-05	0.3625

Hum Mol Genet [IF 8.058] Submitted

SHORT COMMUNICATION

Replication of the association between a chromosome 9p21 polymorphism and coronary artery disease in Japanese and Korean populations

Kunihiko Hinohara · Toshiaki Nakajima · Megumi Takahashi · Shigeru Hohda · Taishi Sasaoka · Ken-ichi Nakahara · Kouji Chida · Motoji Sawabe · Takuro Arimura · Akinori Sato · Bok-Soo Lee · Ji-min Ban · Michio Yasunami · Jeong-Euy Park · Toru Izumi · Akinori Kimura


Association of rs1333049 on chromosome 9p21 with CAD in Japanese and Koreans

Genotype	CAD (n = 604) n (%)			p value
(a) Japanese				
GG	114 (18.9)	286 (24.9)	0.70 (0.55-0.90)	0.0046
GC	312 (51.7)	606 (52.7)	0.96 (0.79-1.17)	ns
CC	178 (29.5)	259 (22.5)	1.44 (1.15-1.80)	0.0013
C allele frequency	0.55	0.49	1.30 (1.13-1.49)	0.00027
HWE (p)	0.54	0.19		
Genotype	CAD (n = 679) n (%)	Control (n = 706) n (%)	OR (95%CI)	p value
(b) Korean	(n = 679)	(n = 706)	OR (95%CI)	p value
	(n = 679)	(n = 706)	OR (95%CI) 0.81 (0.64-1.04)	p value
(b) Korean	(<i>n</i> = 679) <i>n</i> (%)	(n = 706) n (%)		
(b) Korean GG	(n = 679) n (%) 158 (23.3)	(n = 706) n (%) 192 (27.2)	0.81 (0.64-1.04)	ns
(b) Korean GG GC	(n = 679) n (%) 158 (23.3) 335 (49.3)	(n = 706) n (%) 192 (27.2) 353 (50.0)	0.81 (0.64–1.04) 0.97 (0.79–1.20)	ns

Chr.9p21 rs1333049 was the susceptibility locus for CAD in Japanese and Koreans

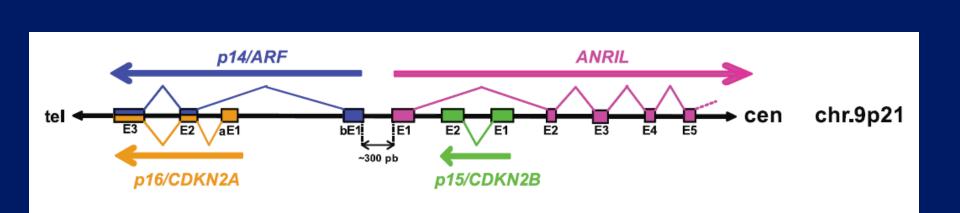
17 Genetic Loci associated with CAD

Loci	Chromosomal location	SNP	RAF, %	Odds ratio per risk allele (95% CI)	Candidate genes	Putative mechanism
1	1p13	rs599839	77	1.13 (1.08–1.19)	CELSR2, PSCR1, SORT1	LDL mediated
	1p13	rs646776	81	1.19 (1.13–1.26)	CELSR2, PSCR1, SORT1	
2	2p32	rs11206510	81	1.15 (1.10-1.210	PCSK9	LDL mediated
3	1q41	rs3008621	72	1.10 (1.04–1.17)	MIA3	Unknown
	1q41	rs17465637	72	1.14 (1.10–1.19)	MIA3	
4	2q33	rs6725887	14	1.17 (1.11–1.19)	WDR12	Unknown
5	2q36	rs2972416	37	0.46	IRSI	Defective insulin signaling and NO production
6	3q22	rs9818870	15	1.15 (1.11–1.19)	MRAS	Adhesion signaling
7	6p21.31	rs2814982	16	0.49	C6orf106	Unknown
8	6p24	rs12526453	65	1.12 (1.08–1.17)	PHACTRI	Coronary calcification
9	6q26-6q27	rs2048327	18	1.20 (1.13–1.28)	LPA,LPAL2, SLC22A3	Promotes atherothrombosis
	6q26–6q27	rs3127599	18	1.20 (1.13–1.28)	LPA,LPAL2, SLC22A3	
	6q26-6q27	rs7767084	18	1.20 (1.13–1.28)	LPA,LPAL2,	
	6q26-6q27	rs10755578	18	1.20 (1.13–1.28)	SLC22A3 LPA,LPAL2, SLC22A3	
	6q266q27	rs3798220	2	1.47 (1.35–1.60)	LPA,LPAL2, SLC22A3	
	6q26-6q27	rs10455872	7	1.68 (1.43–1.98)	LPA,LPAL2, SLC22A3	
10	7q32	rs4731702	48	0.59	KLF14	Unknown
11	8p22	rs1495741	22	2.85	NAT2	Unknown
12	9p21	rs1333049	52	1.20 (1.16–1.25)	ANRIL, CDKN2A, CDKN2B, MTAP	Increased proliferation of smooth muscle cells
	9p21	rs4977574	56	1.29 (1.25–1.34)	ANRIL, CDKN2A, CDKN2B, MTAP	
	9p21	rs10757274	48		ANRIL, CDKN2A, CDKN2B, MTAP	
	9p21	rs28383206	51		ANRIL, CDKN2A, CDKN2B, MTAP	
	9p21	rs2383207	51	1.22 (1.13–1.33)	ANRIL, CDKN2A, CDKN2B, MTAP	
	9p21	rs107572378	47	1.25 (1.15–1.36)	ANRIL, CDKN2A, CDKN2B, MTAP	
	9p21	rs10116277	48		ANRIL, CDKN2A, CDKN2B, MTAP	
13	10q11	rs501120	84	1.11 (1.05–1.18)	CXCL12	Neointima formation after arterial injury,
	10q11	rs1746048	84	1.17 (1.11–1.24)	CXCL12	platelet activation in atherosclerotic lesions
14	12q24	rs2259816	37	1.08 (1.05–1.11)	HNF1A	apoM-mediated HDL modification
15	12q24	rs3184504	40	1.13 (1.11–1.19)	SH2B3	Reduced anti-inflammatory activity contributes
	12q24	rs11065987	34	1.14 (1.10–1.19)	SH2B3	to the progression of plaques
16	16p13	rs1122608	75	1.15 (1.10-1.21)	LDLR	LDL-mediated
17	21q22	rs9882601	13	1.20 (1.14–1.27)	KCNHE2, MRPS6, SLC5A3	Unknown

Sivapalaratnam S et al. Curr Atheroscler Rep 2011;13:225-232

Thirty-five common variants for coronary artery disease: the fruits of much collaborative labour

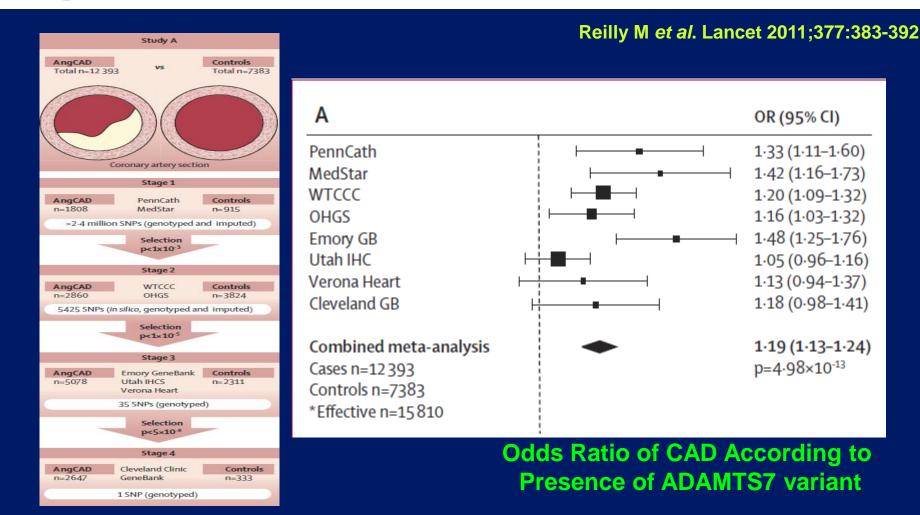
John F. Peden and Martin Farrall*

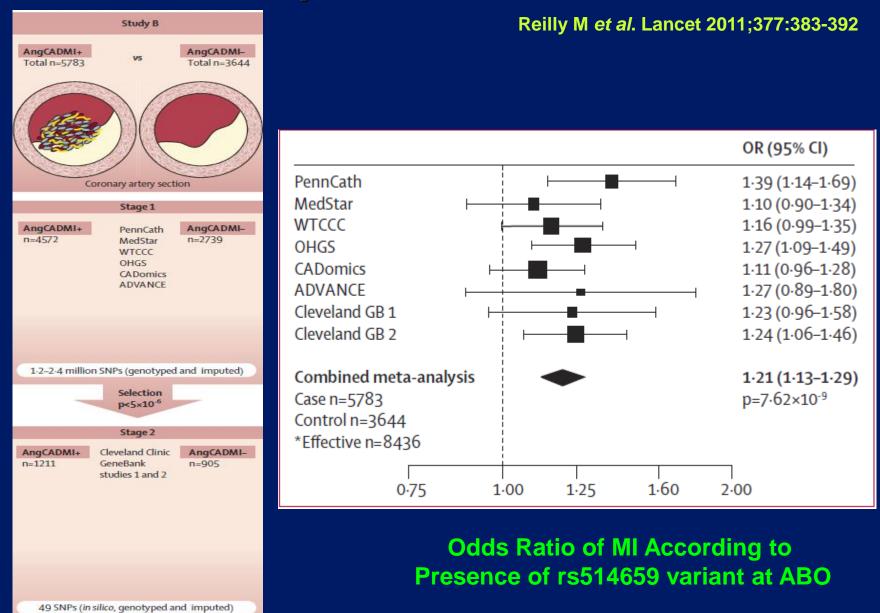

Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK

										Hum Mol Genet 2011;20:R
Chr	Position	Locus ^a	SNP	References	Repor	rted	SNP-spec	ific herital		
					effect		$(h^2_{\rm SNP}), \%$	6		
					EAF	OR	$K_{\rm p} = 2\%$	$K_{\rm p} = 5\%$	$K_{\rm p} = 10\%$	
l	55 496 039	PCSK9	rs11206510	MIGen (36)	0.82	1.08	0.03	0.04	0.05	
1	56 962 821	PPAP2B	rs17114036	CARDIOGRAM (3)	0.91	1.17	0.07	0.09	0.11	
1	109 822 166	SORT1	rs599839	Samani et al. (58), MIGen (36)	0.78	1.11	0.06	0.08	0.10	
1	222 823 529	MIA3	rs17465637	Samani et al. (58), MIGen (36)	0.74			0.15	0.18	
2	44 072 576	ABCG8	rs4299376	HumanCVD (8)	0.29	1.09	0.04	0.05	0.07	
2	203 745 885		rs6725887	MIGen (36)	0.15			0.09	0.11	
3	138 119 952		rs2306374	Erdmann et al. (59)	0.18			0.07	0.09	
5	131 867 702		rs2706399	HumanCVD (8)	0.48			0.01	0.01	
5	11 774 583	C6orf105	rs6903956 ^b	Wang <i>et al.</i> (7)	0.07			0.45	0.56	
5	12 927 544	PHACTR1	rs12526453		0.67			0.08	0.10	
5	35 034 800	ANKS1A		CARDIoGRAM (3)	0.75			0.04	0.05	
5	134 214 525			CARDIoGRAM (3)	0.62			0.06	0.07	
5	160 961 137		rs3798220	Clarke et al. (30)	0.02			0.32	0.40	
5	161 010 118			Clarke <i>et al.</i> (30)	0.07			0.73	0.90	
7	107 244 545			C4D 2011 (4)	0.80			0.06	0.08	
7	129 663 496			CARDIOGRAM (3)			0.06	0.07	0.09	
8	126 495 818			HumanCVD (8)		1.04		0.02	0.02	
9	22 098 574	ANRIL/CDKN2BAS	rs4977574	WTCCC (60), McPherson <i>et al.</i> (61), Helpedetting (d, d) Summing (d, d) (59) MIC in (20)	0.46	1.29	0.53	0.68	0.84	
	126154160	100	570450	Helgadottir et al. (62), Samani et al. (58), MIGen (36)	0.01	1.1.0	0.05	0.07	0.00	
9	136 154 168 30 335 122	KIAA1462	rs579459 rs2505083	CARDIOGRAM (3), Reilly <i>et al.</i> (6) CARD 2011 (4). Endmann <i>et al.</i> (5)	0.21 0.38			0.06 0.06	0.08 0.08	
10				C4D 2011 (4), Erdmann <i>et al.</i> (5)						
10 10	44 775 824 91 002 927	CXCL12 LIPA	rs1746048 rs1412444	Samani <i>et al.</i> (58), MIGen (36) C4D 2011 (4)	0.87 0.42			0.03 0.07	0.04 0.08	
10		CYP17A1-NT5C2	rs12413409	CARDIOGRAM (3)	0.42			0.07	0.08	
10	104 / 19 096		rs974819	C4D 2011 (4)	0.89			0.05	0.07	
11		APOA1-C3-A4-A5	rs964184	CARDIOGRAM (3)	0.32			0.00	0.08	
12	111 884 608		rs3184504	Soranzo <i>et al.</i> (63)	0.13			0.07	0.09	
13		COL4A1-A2	rs4773144	CARDIOGRAM (3)	0.44			0.05	0.06	
14	100 133 942		rs2895811	CARDIOGRAM (3)	0.44			0.05	0.06	
15	79 111 093	ADAMTS7	rs4380028	C4D 2011 (4), CARDIoGRAM (3), Reilly <i>et al.</i> (6)	0.60			0.06	0.08	
17	2 126 504	SMG6-SRR	rs216172	CARDIOGRAM (3)	0.37			0.05	0.06	
17	17 543 722	PEMT	rs12936587	CARDIoGRAM (3)	0.56			0.05	0.06	
17	46 988 597	GIP-ATP	rs46522	CARDIoGRAM (3)	0.53			0.02	0.04	
19	11 163 601	LDLR	rs1122608	MIGen (36)	0.77			0.12	0.15	
19	45 395 619	APOE	rs2075650	HumanCVD (8)	0.14			0.09	0.11	
21	35 599 128	MRPS6	rs9982601	MIGen (36)	0.15			0.14	0.18	
									5.29	
h^2_{tota}	al						3.30	4.27	3.49	

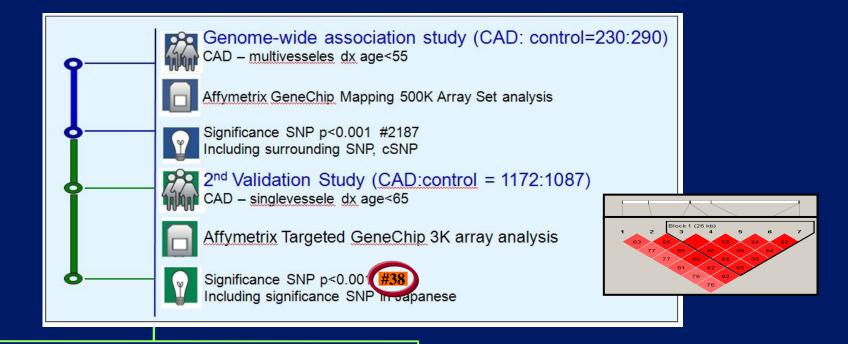
ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS

Eric Pasmant,**,**,1 Audrey Sabbagh,*** Michel Vidaud,*** and Ivan Bièche***


*Unité Mixte de Recherche (UMR)745 Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France; and [†]Service de Biochimie et Génétique Moléculaire, Hôpital Beaujon, Clichy, France


ANRIL important for expression of CDK activity and vascular proliferation

Pasmant E et al. FASEB J 2011;25:444-448


Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies

rs514659 at 9q34.2 at ABO locus and MI

GWAS of CAD in CGC study

Identify significant SNPs

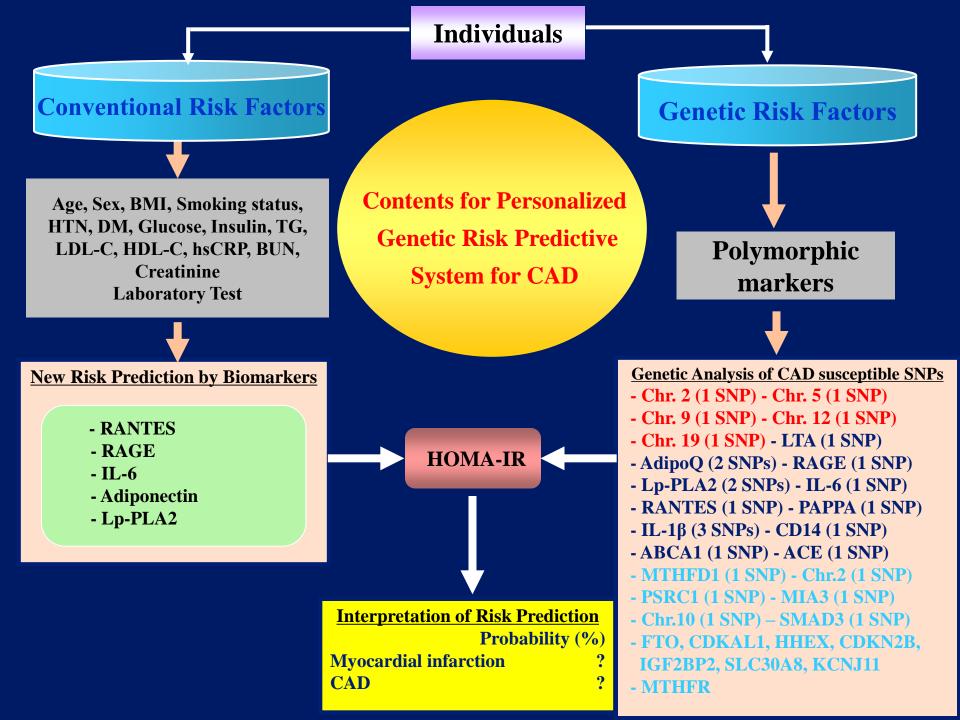
Clinical follow up study

Construction of CAD-related CGC Cohort

* Male:	r <mark>oup (503 ੲ</mark> ≥55 years -vessels	5) 5, Female: ≥6	0 years	Control group (503 명) * Case group과 1:1 matching * Control 146명 추가 분석					
Conver Fact		Biomarkers	SNP (32)						
Age	BUN	ADIPOQ	rs1801133	3 rs2569190	rs1333049	rs4341			
Sex	Creatinine	LP-PLA ₂	rs1746563	37 rs10946398	rs2230806	rs1502017			
DM	Glucose	RAGE	rs1271325	59 rs909253	rs4149263				
HT	Insulin	IL-6	rs16944	rs2070600	rs13290387				
Smoke	hsCRP	RANTES	rs1143623	3 rs1051931	rs501120				
BMI			rs4848306	6 rs16874954	rs5015480				
T-Chol			rs4402960) rs1871388	rs5215				
HDL			rs2241766	6 rs1800796	rs11048979				
TG			rs1501299	9 rs13266634	rs8050136				
LDL			rs155948	rs564398	rs2107538				

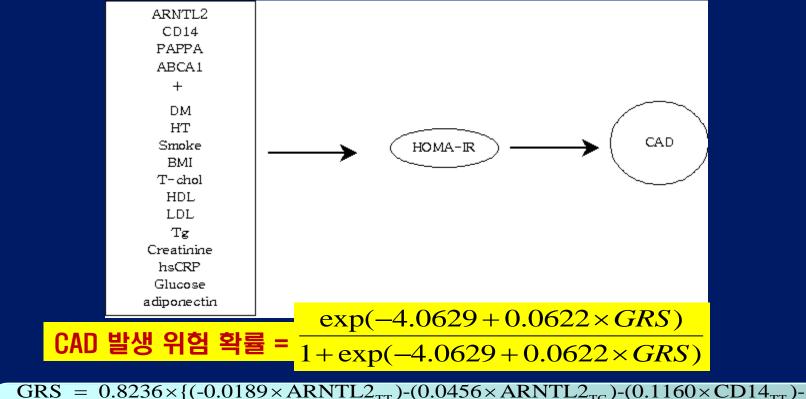
Results of CAD-GWAS in CGC

			GWAS	Repl. 1	Repl. 2	Repl. 3
		Case / Control	230/290	1392/1355	502/648	2123/2690
		Mean age(case)	48.3±4.72	54.5 ±7.79	49.3 ±5.36	51.6±7.52
		Age criteria	≤ 5 5	≤ 65	\leq 55(m), 60(f)	< 55(m), 60(f)
Chr.	Gene	rs #	Stage1 (500K)	Stage2 (3K)	Stage3 (32)	Stage4 (15)
9р		rs133****	5.643E-05	3.080E-07	0.0109	3.30E-08
2р	SPTBN1	rs127****	3.009E-06	1.060E-05	0.0048	0.0034
5q		rs15****	3.125E-03	1.770E-05	0.0049	0.0455
12p	ARNTL2	rs1104****	8.994E-04	6.920E-06	0.0047	0.5961
19p	CACNA1A	rs150****	4.839E-05	4.320E-05	0.0890	-
1p	Vav3	rs1275****	6.192E-03	1.906E-03	0.3889	-
1p		rs599***	0.0272	-	0.8887	-
1q	MIA3	rs1746****	0.0860	-	0.0227	0.0934
10q		rs501***	0.9211	-	0.0100	-


Genome-wide association analysis and replication of coronary artery disease in South Korea suggests a causal variant common to diverse populations

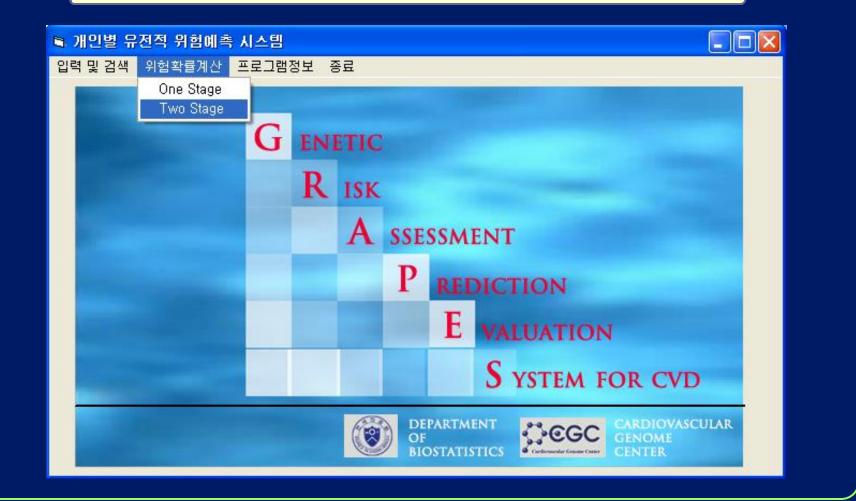
Eun Young Cho,² Yangsoo Jang,³ Eun Soon Shin,² Hye Yoon Jang,² Yeon-Kyeong Yoo,² Sook Kim,² Ji Hyun Jang,² Ji Yeon Lee,² Min Hye Yun,² Min Young Park,² Jey Sook Chae,³ Jin Woo Lim,⁴ Dong Jik Shin,⁴ Sungha Park,⁴ Jong Ho Lee,³ Bok Ghee Han,⁵ Kim Hyung Rae,⁵ Lon R Cardon,⁶ Andrew P Morris,¹ Jong Eun Lee,² Geraldine M Clarke¹

 Table 2
 Stage 1, Stage 2 and combined Stage 1 and Stage 2 samples association results for risk of coronary artery disease at single nucleotide polymorphisms in 9p21 with p<1e-04 in the combined sample</td>


Single nucleotide				Genotypes minor homozygous/ heterozygous/major homozygous		Minor allel frequency	e	OR for risk allele	
polymorphism	Minor	Risk	Stage	Control	Case	Control	Case	(95% CI)	p Value
rs6475606	С	т	S1	24/124/120	13/80/132	0.32	0.24	1.55 (1.16 to 2.07)	3.24e-03
			S2	123/450/474	98/458/580	0.33	0.29	1.22 (1.08 to 1.39)	2.00e-03
			S1&S2	147/574/594	111/538/712	0.33	0.28	1.27 (1.13 to 1.43)	5.75e-05
rs4977574	G	G	S1	44/133/91	63/117/45	0.41	0.54	1.71 (1.31 to 2.22)	6.74e-05
			S2	199/522/345	274/569/315	0.43	0.48	1.22 (1.08 to 1.37)	1.27e-03
			S1&S2	243/655/436	337/686/360	0.43	0.49	1.29 (1.16 to 1.44)	4.61e-06
rs2891168	G	G	S1	43/134/91	63/116/45	0.41	0.54	1.73 (1.32 to 2.25)	5.16e-05
			S2	199/524/351	274/569/316	0.43	0.48	1.23 (1.09 to 1.38)	7.59e-04
			S1&S2	242/658/442	337/685/361	0.43	0.49	1.3 (1.17 to 1.45)	2.27e-06
rs1333042	Α	G	S1	27/130/106	14/90/119	0.35	0.26	1.53 (1.15 to 2.04)	3.82e-03
			S2	156/473/455	122/490/555	0.36	0.31	1.23 (1.09 to 1.39)	1.04e-03
			S1&S2	183/603/561	136/580/674	0.36	0.31	1.27 (1.13 to 1.42)	3.71e-05
rs1333048	С	С	S1	55/134/76	71/119/35	0.46	0.58	1.68 (1.29 to 2.19)	1.38e-04
			S2	232/515/326	310/574/273	0.46	0.52	1.26 (1.12 to 1.42)	1.28e-04
			S18S2	287/649/402	381/693/308	0.46	0.53	1.32 (1.18 to 1.47)	4.95e-07
	-								
rs1333049	С	C	S1	54/137/76	72/118/33	0.46	0.59	1.75 (1.34 to 2.29)	4.51e-05
			S2	232/519/334	309/574/282	0.45	0.51	1.25 (1.12 to 1.41)	1.50e-04
			S1&S2	286/656/410	381/692/315	0.45	0.52	1.32 (1.19 to 1.47)	3.08e-07

The most notable association with CAD was observed on chromosome 9p21.3. The strongest signal was at rs1333049. These results replicate signals first observed in Caucasians and subsequently observed in a variety of Asians including Japanese, Korean and Chinese Han.

개선된 CAD 발생 위험 예측 모형 구축


CAD 발생 위험 확률 예측을 위한 2-stage model 구축(1,006명)

 $GRS = 0.8236 \times \{(-0.0189 \times ARN1L2_{TT}) - (0.0456 \times ARN1L2_{TC}) - (0.1160 \times CD14_{TT}) - (0.1213 \times CD14_{TC}) + (0.0077 \times PAPPA_{CC}) - (0.0387 \times PAPPA_{CG}) - (0.0275 \times ABCA1_{TT}) - (0.0428 \times ABCA1_{TC}) - (0.0440 \times DM) + (0.0143 \times HT) - (0.0245 \times Smoke) + (0.078 \times BMI) - (0.2625 \times T - chol) + (0.0981 \times HDL) + (0.3092 \times LDL) + (0.1527 \times Tg) + (0.2174 \times Creatinine) + (0.4784 \times Glucose) - (0.0889 \times hsCRP) - (0.0007 \times Adiponectin) \}$

CAD 발생 위험 예측시스템 개발

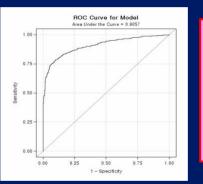
CAD 발생 위험 예측시스템의 프로그램 실행 화면

Two-stage model을 이용한 CAD 발생 위험 확률 계산 화면

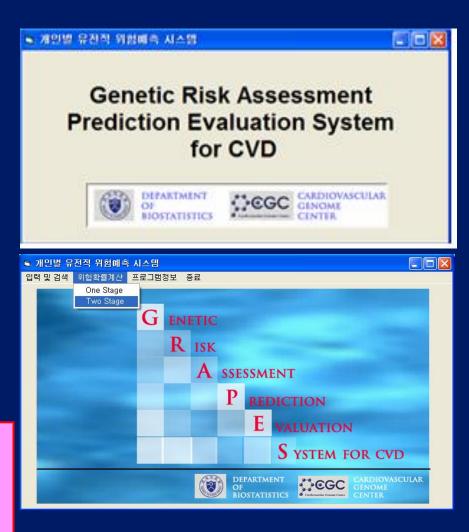
One-stage model을 이용한 CAD 발생 위험 확률 계산 화면

6	Form1										
Г	Patient Re	egistry Inform	ation—					_			
	Unitno		seek	Name	Age	_					
	,			,	,						
	Date										
	-Clinical	Factor				SNP Inform	nation			-Biomarker, Intermediate-	
	DM HT Smoke	CN CN CN	C Y C Y C Y	BMI T-Chol HDL LDL TG Creatinine hsCRP Glucose		ARNTL2 CD14 Pappa ABCA1	с П с СС	CTCC CTCC CCGC CTCC	CC GG	Adiponectin HOMA-IR	-
Fisk Prediction Risk Prediction Result Probability of disease Risk Ratio to normal											

🛱 Form1											
- Patient Registry Information Unitno seek Name	Age										
UM CN CY TG HT CN CY HD Smoke CN CY Cre HO	Chol ARNTL2 CIT CIC SPINBI CIT CIC	C CC IL6									
Risk Prediction Risk Prediction Result Probability of disease Risk Ratio to normal											

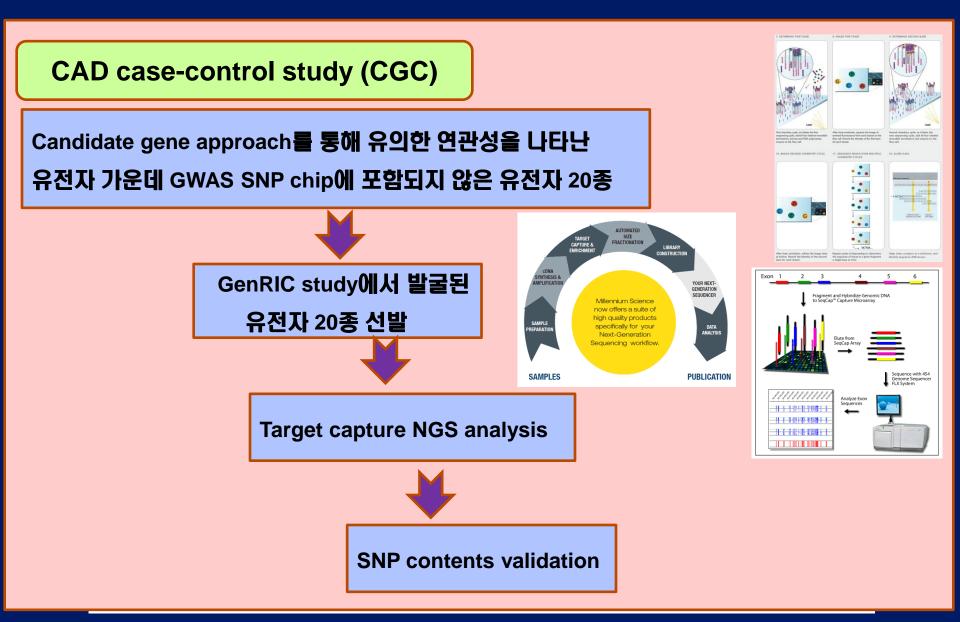

예측모형을 통해 추정된 CAD 발생 위험 확률 (예)

DM	Smoke	BMI		hsCRP	ARNTL2	CD14	PAPPA	ABCA1	Probability(%)	
No	Yes	normal		normal	TC	TC	CG	ТС	12.33	
No	Yes	normal		normal	TC	TT	CG	ТС	12.35	
No	Yes	normal		normal	TC	TC	CG	TT	13.86	
No	Yes	normal		normal	TT	CC	СС	CC	50.22	
No	Yes	normal		normal	СС	CC	GG	СС	50.61	
No	Yes	normal		normal	СС	СС	СС	CC	53.90	
Yes	No	normal		normal	ТС	TC	CG	ТС	12.54	
Yes	No	normal		normal	TC	TT	CG	TC	12.56	
Yes	No	normal		normal	ТС	TC	CG	TT	14.10	
	•••									
Yes	No	normal		normal	TT	СС	СС	СС	50.71	
Yes	No	normal		normal	СС	СС	GG	СС	51.10	
Yes	No	normal		normal	CC	СС	CC	СС	54.39	


CAD 발생 위험 예측모형 개발 결과

CAD 예측 실용 모형

- SNPs
- rs11***(ARNTL2), rs12***(SPTNB1), rs15***(Ch5), rs13***(Ch9)
- Conventional risk factor
- DM, hypertension, smoke, BMI, Totalcholesterol, Tg, HDL, Creatinine
- ◆ 민감도 80.4%, 특이도 84.5%,
 정확도 81.5%, AUC 0.906


타당성 평가 (GenRIC + KCDC 자료) 민감도 100%, 특이도 73.5%, 정확도 86.5%

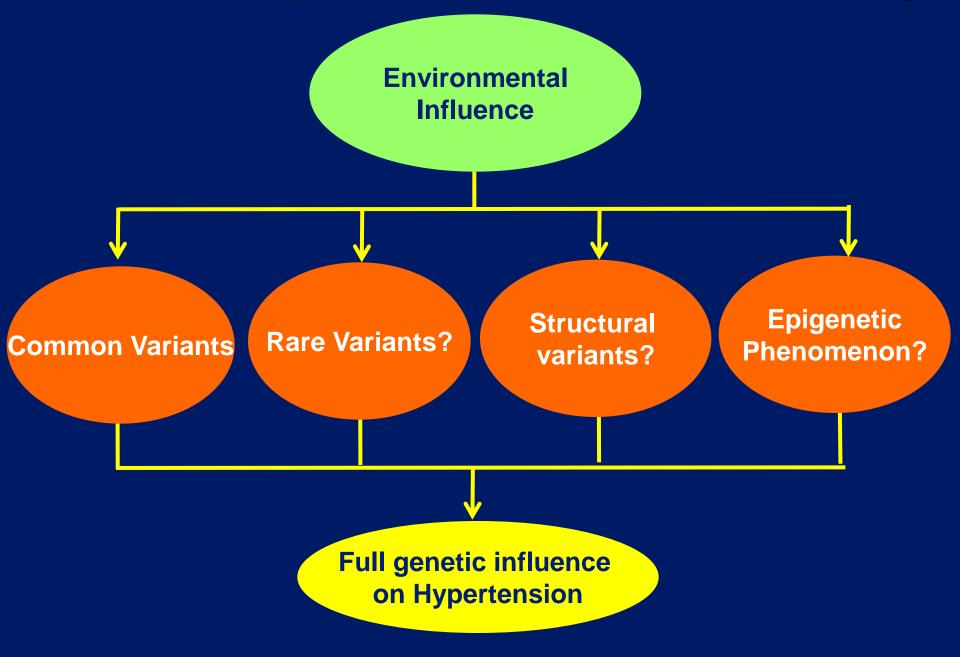
Summary: Identified causative genetic variants for CAD in Korans

Loci	SNP	OR	Р	Gene	Function
2p21	rs1687****	1.212	3.01E-06	SPTBN1	Determination of cell shape, arrangement of transmembrane proteins
4q12	rs2124***	1.187	3.27E-05	IGFBP7	Modulation of vascular remodeling
5q	rs1507***	1.285	3.13E-03	intergenic	Not known
9p21.3	rs1333***	1.263	3.30E-08	nearby CDKN2A/2B	Regulation of the cell cycle
12q23	rs3782***	1.255	2.13E-05	MYL2	Regulation of myosin ATPase activity in smooth muscle
13q12	rs9508***	1.192	2.34E-05	FLT1	Control of cell proliferation and differentiation

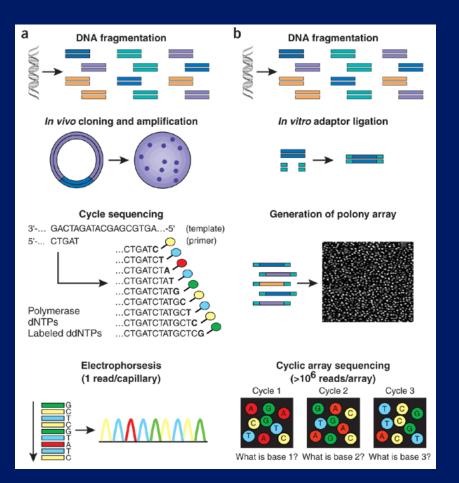
향후 심혈관질환 예측모형 콘텐츠 발굴 전략

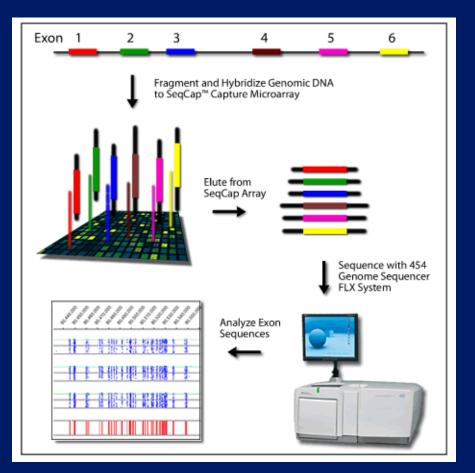
Modest effect of common alleles

Table 3 Prospective studies for 9p21 association with incident CHD risk


Study	Reference	Cohort	Size	Primary outcome*	Follow-up (years)	HR (95% CI) per risk allele	HR (95% CI) risk homozygotes vs reference	Improvement in C-statistic (9p21 plusmodel)	Risk reclassification
Bruneck	62	Population	769	M/D/R/S/P	10	1.35 (1.02 to 1.78)			
Northwick park	97	Population	2742	M/D/R	15		1.57 (1.10 to 2.25)	No	Some
Women's Health Study	98	Population	22 129	M/D/R/S	10.2	1.15 (1.03 to 1.27	1.32 (1.07 to 1.63)	No	No
Only 1 study from the ARIC study showed improvement Of CV risk predictability									
PMI Study		ACS	733	D/H	9.1		1.08 (0.74 to 1.60)†		
GRACE	104	ACS	3247	M/D	0.5	1.49 (1.03 to 1.98)	-	No	
Peng <i>et al</i>	105	ACS	520	M/D/U/F	2.4	NS	NS		
INVEST-GENES	106	CAD + HT	2364	M/D/S	2.8	0.81 (0.66 to 1.00)			
INFORM	106	ACS	557	D/H	3	0.75 (0.59 to 0.95)			
CABG Genomics	107	Post-CABG	845	D	5		1.70 (1.10 to 2.70)†	No	

Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect




Manolio et al, Nature 2009

We have only touched the tip of the iceberg

Next Generation Sequencing (NGS)

a) Sanger method (old), b) NGS (new)

Chip-based capturing exome sequencing

Gap between hereditability and effect

 More common variants that need to be discovered

Gene-gene interaction, gene-environment interaction

♦ Effect of numerous rare variants(0.5-5% minor allele frequency) with large effects → <u>NGS</u>

 ♦ Effect of structural variants in Hypertension pathogenesis → <u>NGS</u>

Effect of chromosomal structure

→ Epigenomics

Conclusion & Further Study

Identified several genetic loci that were strongly associated with CAD in worldwide studies by GWAS

Further studies are needed to survey the associations of the loci with other types of atherosclerotic disease

At a genetic level, studies should focus on fine mapping of the associated regions using NGS

Targeted sequencing of CAD-associated multi-gene by NGS is needed for further identification of causative rare variants

Yonsei Cardiovascular Hospital

Yonsei University College of Medicine

Validated SNPs identified in Asian candidate gene studies for CAD

Loci	SNP	OR	Р	Gene	Validated population
6p21.2	rs16874954 (V279F)	1.922	0.013	Lp-PLA2	Chinese
		0.80	0.002		Korean
6p21.32	rs2070600 (G82S)	2.303	0.001	RAGE	Chinese
		0.749	0.028		Korean
12q24.12	rs11066001	1.63	5.0X10 ⁻¹¹	BRAP	Japanese
		1.68	6.5x10 ⁻⁹		Korean