Angio-vasculogenic potential of CD31⁺ cells

Sung-Whan Kim, Ph.D

Department of of Cardiology Dong-A University Hospital

Stem cells for the treatment of various ischemic organs

Raffi et al. Nature medicine 2003

Neovascularization in Adult Mammals

How these EPC enhance neovascularization?

Improvement of neovascularization

Function

Dimmeler et al. JCI. 2005

Ongoing Issues with BM Cells

1. Severe controversy exists regarding the **transdifferentiation of BM-derived cells** : does **vasculogenesis** really occur in vivo?

Ziegelhoff et al. Circ 2004

2. Therapeutic effects of EPCs or other BM cells are predominantly attributed to **paracrine mechanism** than vasculogenic effects

Rehman *et al.* Circ 2003 Gnecchi *et al.* Nature Med 2005 Kinnaird *et al.* Cir Res 2005 Cho *et al.* JEM 2007

3. Lack of circulating stem/progenitors (CD34+, CD133+, KDR+, c-kit +) in PB or BM Definition of 'true EPCs' is now controversial.

Ingram *et al*. Blood 2005

There is no specific marker(s) to prospectively isolate genuine EPCs

: Is there any surface marker that can encompass cells having high angiogenic and vasculogenic activities?

CD31 expression in human PB cells

: About 30% of total murine BM and human PB, BM-MNC express CD31

Human peripheral blood (PB) mononuclear cells

CD31 and Angiogenic Potential

Murine BM-CD31+ cells showed higher angiogenic properties than the CD31- cells

Kim et al. Circ res 2010

Structure and Function of CD31

; CD31(PECAM-1, Platelet-endothelial cell adhesion molecule-1)

[CD31 structure]

- A member of Ig gene superfamily, 130 kDa type I transmembrane glycoprotein
- [Expression] Express in endothelial cells, naïve T, B cells, monocytes megakaryocytes, NK cells and platelet
- [Function] Regulation of platelet, leukocyte migration, integrin activation, cell survival, angiogenesis etc.

Study Aim

To investigate whether hPB-CD31⁺ cells have angio-vasculogenic property

CD31⁺ cells highly express endothelial specific markers

Green: isotype control

CD31+ cells significantly express monocyte, endothelial markers

		CD31+ cells	CD31- cells
	CD3	42.2±6.6	56.5±8.9
	CD11b	53.4±3.5	39.7±8.1
	CD14	32.0±5.2**	0.2±0.1
	CD19	14.1±4.9	7.0±1.9
	CD45	99.4±0.4	99.5±0.4
Endothelial cell marker	CD31	94.5±3.4**	4.1±1.6
	CD105	55.6±8.3**	6.6±2.3
	CD141	29.6±4.7 **	0.6±0.1
	CD144	54.6±11.1*	6.2±3.6
	CD146	0.5±0.3	0.8±0.5
	vWF	36.3±12.1*	9.1±4.4

(n=3 each, *P<0.05, **P<0.01)

CD31⁺ cells significantly express stem cells markers

CD31

	CD31+ cells	CD31- cells
CD34	3.3±0.2**	0.2±0.05
CD133	2.4±0.4*	0.7±0.2
CD117	3.1±1.2*	1.2±0.5
KDR	7.4±3.1*	3.9±2.7

(n=4 each, *P<0.05, **P<0.01)

Microarray analysis of human PB CD31⁺ and CD31⁻ cells

Human gene 1.0 ST array: 33,265 genes

Kim et al. JACC 2010

CD31⁺ cells significantly express angiogenic genes

Gene Symbol	mRNA - Description	Fold change
NRP1	Neuropilin 1 (NRP1), transcript variant 1, mRNA.	11.8
ANPEP	Alanyl (membrane) aminopeptidase (ANPEP), mRNA.	6.6
IL8	Interleukin 8 (IL8), mRNA.	6.5
HGF	Hepatocyte growth factor (HGF), transcript variant 1, mRNA.	5.8
PDGFC	Platelet derived growth factor C (PDGFC), mRNA.	5.2
VEGFA	Vascular endothelial growth factor A (VEGFA), transcript variant 1, mRNA.	4.7
EDG3	Endothelial differentiation, sphingolipid G-protein-coupled receptor 3, mRNA.	4.2
PECAM1	Platelet/endothelial cell adhesion molecule (CD31 antigen) (PECAM1), mRNA.	3.9
FLT3	Fms-related tyrosine kinase 3 (FLT3), mRNA.	3.5
ANG	Angiogenin, ribonuclease, RNase A family, 5 (ANG), transcript variant 1, mRNA.	3.2
KLF5	Kruppel-like factor 5 (intestinal) (KLF5), mRNA.	3
ANGPT1	Angiopoietin 1 (ANGPT1), mRNA.	2.2
JAG1	Jagged 1 (Alagille syndrome) (JAG1), mRNA.	2.1
PDGFA	Platelet-derived growth factor alpha polypeptide (PDGFA), transcript variant 2, mRNA.	2
ENG	Endoglin (Osler-Rendu-Weber syndrome 1) (ENG), mRNA.	1.8
PDGFRB	Platelet-derived growth factor receptor, beta polypeptide (PDGFRB), mRNA.	-1.5
PDGFD	Platelet derived growth factor D (PDGFD), transcript variant 1, mRNA.	-2
FGFBP2	Fibroblast growth factor binding protein 2 (FGFBP2), mRNA.	-2.2

Microarray analysis of human PB CD31⁺ and CD31⁻ cells

Kim et al. JACC 2010

CD31⁺ cells significantly express multiple angiogenic genes

[qRT PCR]

Kim et al. JACC 2010

CD31⁺ cells gave rise to EPC

(n=5 each,**P<0.01)

Red: acLDL, Green: UEA-lectin

CD31⁺ cells are significantly adherent

(n=3 each, **P<0.01)

Incorporation of Dil-labeled CD31⁺ cells into the nonlabeled HUVEC network

(in vitro capillary network formation)

In vitro differentiation of CD31⁺ cells into endothelial lineages

Kim et al. JACC 2010

In vitro differentiation of CD31⁺ cells into vascular-like tube (EPC culture condition)

Red: acLDL, Green: UEA-lectin, Blue: DAPI

In vitro differentiation of CD31⁺ cells into vascular-like tube

Study design (in vivo experiment)

CD31⁺ cells transplantation increased blood perfusion

(n=9 each group)

*P<0.05, **P<0.01 vs PBS; † P<0.05, ‡ P<0.01 vs CD31-

CD31⁺ cells transplantation increased limb salvage

(n=9 each group)

CD31⁺ cells transplantation increased angiogenic factors in ischemic hindlimb

(In vivo angiogenic gene expression)

CD31⁺ cells transplantation increased capillary density

(n=5 each group, **P<0.01)

CD31⁺ cells transplantation decreased apoptosis

(n=5 each group, **P<0.01 vs CD31-)

Transdifferentiation of CD31⁺ cells into endothelial cells in vivo

Kim et al. JACC 2010

Transdifferentiation of CD31⁺ cells into endothelial cells in vivo

Kim et al. JACC 2010

Transdifferentiation of CD31⁺ cells into endothelial cells in vivo

FISH analysis

Arrow head: pericytic area

Green:ILB-4, Red: Human Y choromosome Blue: DAPI

Quantification of Endothelial Cell Transdifferentiated CD31⁺ Cells in vivo

1.Lectin perfusion into nude mice

- 2. Collect hindlimb tisssue
- 3. Enzyme digestion of hindlimb tissues
- 4. FACS analysis

Perivascular Incorporation of CD31⁺ Cells

[Confocal images at 10 months after cell transplantation]

Endothelial Cells Transdifferentiation of CD31⁺ Cells

[Confocal images at 10 months after cell transplantation]

Durable Endothelial Cell Transdifferentiation of CD31+ Cells

[FACS analysis of hindlimb tissues] ; 10 months after CD31+ cell transplantation

Summary

CD31⁺ cells exhibited higher angiogenic gene expressions.

- CD31⁺ cells showed high blood perfusion rate and limb salvage in ischemic hindlimb model.
- CD31⁺ cells showed long-term engraftment and transdifferentiated into endothelial cells.

Conclusion

These data suggested that CD31 might be alternative marker for the isolation of angio-vasculogenic cells for treating ischemic cardiovascular diseases.

Acknowledgement

•Emory Univ. USA Young-sup Yoon, MD,PhD

•Cha Hospital Hyoungbum Kim, MD,PhD

•Seoul National Univ. Hospital Hyun-Jai Cho, MD,PhD

