Basics of IVUS & OCT

Eun-Seok Shin MD/PhD. Division of Cardiology, Department of Internal Medicine Ulsan University Hospital University of Ulsan College of Medicine

Sound (IVUS) & Light (OCT)

- Sound and light follow the same physical rules of wave propagation
- Boundary conditions are quite different
- Higher penetration and access to RF signals make IVUS better suited for whole plaque imaging
- Higher resolution and more spectroscopic possibilities make light better for superficial morphological imaging (cap thickness)

IVUS & OCT

- Vessel & plaque assessment
- Plaque characterization

- Plaque characterization
- Stent assessment

OCT over IVUS

1. 10 times higher resolution than IVUS (spatial resolution 150~200 μm vs. 15~20 μm)

 Penetration power is lower, 1-3 mm thickness (IVUS: 4-8 mm thickness)

40 MHz

20 MHz

Gray Scale Image

Echolucent

- Discrimination of lipid is inconsistent using grayscale images alone
- Only the envelope amplitude is used to form the gray-scale IVUS

Grey Scale IVUS Tissue Characterization Grey Scale Pathology Ultrasound Wave Нуро Fibrofatty Iso/Hyper Fibrous Hyper with Shadow Calcium

Fibrous Cap Necrotic Core

Detection of Necrotic Core

- Lipid necrotic area
- 40MHz IVUS

 Human 10 coronary & 2 carotid arteries, in vitro 30 /122 (25%): histological lipid pool 19/122 (16%): IVUS lipid pool

Sensitivity: 67% Specificity: 94%

Prati F, et al Z Kardiol 2000

Plaque Characterization

Integrated Backscatter (IB) IVUS

Virtual Histology (VH) IVUS

• i-Map

Radiofrequency Data

-0.25

2

3

1

Time (usec)

6

q

Integrated Backscatter (IB)-IVUS

Calcification Dense Fibrous Fibrosis Lipid Pool

Okubo, Kawasaki, et al Ultrasound Med Biol 2008, 34:655-63.

Grey Scale IVUS

VH-IVUS

In vitro Diagnostic Accuracy Necrotic Core (96%) Dense Calcium (97%) Fibrous (94%) Fibrofatty (94%)

Pathological Intim al Thickening (PIT)

Thick Cap Fibroath eroma

Nair, et al Eurointerv 2007, 3:113-120.

Stent Struts

Before-Stent

Post-Stent

Tissue Characterization IVUS: VH, iMAP

VH	Color	Accuracy
Fibrous		87 %
Fibro-fatty		87 %
Necrotic core		88 %
Dense calcium		97 %

J. Am. Coll. Cardiol 2006,47:2405-2412

Eurointervention 2009;5:133-139

Intracoronary OCT Principle

OCT, analogous to sonar and radar, measures <u>optical echoes</u>,

C7XR System

- Balloon occlusion not required
- Fast flush, spiral pullback acquisition
- 5 cm arterial segment in 2.5 sec
- Rapid exchange (Rx) imaging catheter

Plaque Characterization

Normal artery wall with mild intimal thickening

Fibrofatty plaque

Calcified Plaque

Ex Vivo Study Results

Fibrous	SENS	.87	PPV	.88
	SPEC	.97	NPV	.96
Calcific	SENS	.95	PPV	1.0
	SPEC	1.0	NPV	.95
Lipid pool	SENS	.92	PPV	.81
	SPEC	.94	NPV	.97

Intracoronary Imaging Comparison among OCT & IVUS

 Tissue Characterization: comparison with histology

Vulnerable plaque identification

Stent Follow-up

Fibrous plaque

Signal rich Diffuse border

Fibrous Plaque

Fibrocalcific plaque

Ó

Signal poor Sharp border

Calcified Plaque

Calcified plaque

Superficial calcified nodule

Fibrofatty plaque

Signal poor Diffuse border

Thrombus

Red & white thrombus

Red thrombus

White thrombus

Protrusion mass with shadow

Protrusion mass with shadow

Kubo T, Akasaka T, et al.(J Am Coll Cardiol 50:933-939,2007)

Instent thrombus

DES

BMS

Distal to DES

Neointimal Coverage

Post-stent follow up

Various OCT images of acute impacts after stent implantation

Shin ES et al. J Invasive Cardiol. 2010 ;22:435-9.

OCT Findings Post Stenting Incidence of periprocedural vessel trauma

Edge
dissectionIntra-stent
dissectionTissue
prolapseStrut
malapposition26.0%87.5%97.5%65.5%

Gonzalo N et al., Heart 2009

Comparison of OCT and IVUS Findings Post Stenting

Dissection Tissue Incomplete Irregular prolapse apposition struts

Bouma, Jang, Heart 2003

Thin-cap fibroatheroma (TCFA)

IVUS Advantages and Disadvantages

- Assessment of lumen, vessel wall and adventitial border
- Well validated
- Golden standard
- High amount of well documented clinical data showing impact on clinical outcome
- Established indications

Mintz GS et al. J Am Coll Cardiol. 2001 Apr;37(5):1478-92

OCT Advantages and Disadvantages

There is a large body of data demonstrating OCT sensitivity, specificity and reproducibility
To differentiate plaque type
To identify thin cap fibroatheroma
To assess stent strut apposition
To assess vascular response after PCI

OCT Advantages and Disadvantages

- In vivo image interpretation is easy, but might be hampered
 - Artifacts
 - Limited penetration depth and resolution
 - Morphology does not always allow direct conclusions on function

OCT Advantages and Disadvantages

• The clinical importance and the prognostic value of OCT findings need further evaluation.

Need for standardization

- Image display
- Imaging protocol
- Image interpretation
- Terminology
- Qualitative & quantitative analysis

Intravascular Diagnostic Tools

No single modality can identify all of the relevant characteristics of coronary plaques.

Thank you for your attention !

1111 / 11111

