TAVR: Where are we Heading in 2014?

Neal Kleiman, MD Houston Methodist DeBakey Heart and Vascular Institute

Estimated TAVR Penetration Among Eligible Patients in Europe

 Despite a 33 fold growth in the first five years, there is still tremendous variability among penetration in different countries

DeBakey Heart & Vascular Center

Methodist

TAVR Directions

- 1. Patient Selection
- 2. New Groups
- 3. New Devices

PARTNER Study Program Design (Edwards Sapien Valve)

In <u>High Risk But Operable</u> Patients, TAVR and SAVR are Equivalent at Three Years (PARTNER A)

PARTNER B: Two Year Follow-up (in Patients Judged to be "Inoperable")

Makkar RR et al. N Engl J Med 2012;366:1696-1704.

Metholist DeBakey Heart & Vascular Center

CoreValve USIDE Extreme Primary Endpoint

DeBakey Heart & Vascular Center

Metholist

TAVR: The Core and the Fringes

Comparison Between PARTNER COHORT B and STS 2006 Baseline Characteristics for Isolated sAVR:

	PARTNER Cohort B	STS 2006 <i>(N=15,397)</i>	
Age (y)	83.3	70	(13% > 80y)
Male (%)	82%	57%	
NYHA III or IV	92.2%	54%	
Prior MI	1 9%	10%	
COPD	41.3%	19.9%	
LVEF	53.3%	56%	
PAD	30%	8.2%	
Creat. $> 2 \text{ mg/dL}$	5.6%	5.4%	
Prior CABG	37%	9%	

Metholist DeBakey Heart & Vascular Center Leon, MB. NEJM. 2010;363:1597 Brown, JM. J Thorac Cardiovasc Surg.2009;137:82 Edwards, F. J Am Coll Cardiol. 2001;37:885

PARTNER B: Two Year Follow-up (in Patients Judged to be "Inoperable")

Makkar RR et al. N Engl J Med 2012;366:1696-1704.

Metholist DeBakey Heart & Vascular Center

Mortality After SAVR in Patients with Co-Morbidities

Thourani, Ann Thorac Surg. 2013; 95:838

Metholist DeBakey Heart & Vascular Center

The Society of Thoracic Surgeons National **Database Status Report**

Richard E. Clark, MD

& Vascular Center

Chairman, Ad Hoc Committee* to Develop a National Database for Thoracic Surgery

This report describes the development of the first known national surgical database designed for the practicing community cardiothoracic surgeon. Acceptance by members of The Society of Thoracic Surgeons has been gratifying. The number of patients on the system has grown from 116,109 at the end of 1991 to an anticipated 350,000 to 450,000 by the end of 1993. At the time of this report, 842 surgeons were participating, and more than 1,200 will be on the system by the end of 1993. A risk stratification system has been incorporated into the software, which predicts each patient's risk based on the individual surgeon's past experience. Trend analyses demonstrate a substantial increase in the number of patients at increased risk for perioperative death for coronary artery bypass operations over the past 5 years, while observed mortality has remained relatively constant. Programs are available for adult and congenital heart disease, lung cancer, and esophageal cancer, and modules for mediastinal tumors, pleural disorders, and benign pulmonary disease will soon be added. We anticipate that growth will continue as the need for practice profile data increases because of reimbursement issues.

(Ann Thorac Surg 1994;57:20-6)

	Online STS R	sk Calculator Dataset: 2.73		Definitions Support		
	Help More about Risk C	alculator	Ne	w Print	Calculation	S
		Today's Da	ate 10/5/2013		Procedure Name	Isolated AVRepl
	Procedure				Risk of Mortality	6.222%
					Morbidity or Mortality	26.453%
	Coronary Artery Bypass	C Yes No C Missing			Long Length of Stay	14.895%
	Valve Surgery	● Yes ○ No ○ Missing			Short Length of Stay	15.517%
	Aortic	● Yes C No C Missing			Permanent Stroke	2.407%
	Aortic Procedure	Replacement			Prolonged Ventilation	18.767%
TTI I TI		C Repair/Reconstruction			DSW Infection	0.226%
		C Root Reconstruction with valved conduit			Popal Failuro	6 975%
		C Replacement and insertion aortic non-valved condu	uit		RenalFallure	0.073%
		C Resuspension Aortic Valve without replacement of Aorta	ascending		Reoperation	9.571%
		C Resuspension Aortic Valve with replacement of as	cending Aorta			
		C Apico-aortic conduit (Aortic valve bypass)				
		C Autograft with pulmonary valve- Ross procedure				
		C Homograft				
		C Valve sparing root reimplantation (David)				
		 Valve sparing root remodeling (Yacoub) 				
Meth		C Missing				
	Resection of Sub-Aortic Stenosis	C Yes No C Missing 				
DeBak	ey Heart		((((((

Trial Guidelines

- PARTNER B, CV Extreme Risk: STS PROM > 15
- PARTNER A, CV • High Risk: STS PROM >10

Two-Year Mortality, Stratified According to the Society of Thoracic Surgeons (STS) Risk Score

Metholist

DeBakey Heart & Vascular Center

Makkar RR et al. N Engl J Med 2012;366:1696-1704.

A Realistic Expectation?

Metholist

DeBakey Heart & Vascular Center

Frailty Assessment

Patient A vs. Patient B

Same age and predicted risk One passes the "eyeball test" – one does not

Photos courtesy of Michael J. Mack, MD <u>Med</u>ical City Dallas

Metholist

DeBakey Heart & Vascular Center

Core Valve USIDE Extreme Risk: Frailty Assessment

Frailty Characteristic	N=471
Anemia With Prior Transfusion, %	22.9
BMI < 21 kg/m², %	7.6
Albumin < 3.3 g/dL, %	18.5
Unplanned Weight Loss > 10 pounds, %	16.9
Falls in Past 6 Months, %	17.8
5 Meter Gait Speed > 6 secs, %	84.2
Grip Strength < Threshold, %	67.6

Metholist DeBakey Heart & Vascular Center

Extreme Risk Study | Iliofemoral Pivotal

Incremental Ability of the Frailty Score to Predict Outcomes After General Surgery

Makary. J Am Coll Surg. 2010; 210:901

Metholist DeBakey Heart & Vascular Center

Treatments for Symptomatic Severe Aortic Stenosis

Metholist DeBakey Heart & Vascular Center

Surgical Population

Partner A Partner B CoreValve High RîskreValve Extreme

Transcatheter Valve Therapies (TVT) An Advanced Scientific and Clinical Workshop (with LAA Occlusion) CARDIOVASCULAR RESEARCH FOUNDATION a passion for innovation

Treatments for Symptomatic Severe Aortic Stenosis

Metholist DeBakey Heart & Vascular Center

All Patients with Symptomatic Severe AS Lowest Risk 25% 10 Risk

Surgical Population Partner IIA Partner A Partner B SurTAVI CValve HighRist Valve Extreme

"Partner C" Futile

Transcatheter Valve Therapies (TVT) An Advanced Scientific and Clinical Workshop (with LAA Occlusion)

Decreasing STS Score in a Multicenter Population

Piazza: JACC 2013;6:443

Intermediate Risk Population: Major Considerations

- Durability of the valve
- Consequences of aortic insufficiency
- Stroke risk

Expected Survival After Bioprosthetic SAVR

- Metanalysis of 9 studies
- 5,837 valve recipients with 31,874 years of follow-up
- Standardized definitions of events
- Microsimulation model producing 10,000 life histories

Metholist

DeBakey Heart

& Vascular Center

Puvimanasinghe J P A et al. Circulation 2001;103:1535-1541

Partner B

Mean Gradient & Valve Area

Me

DeBakey Heart

& Vascular Center

Stroke and TAVR

Owww.thomaspeschak.com

ITIC VII CAMP

DeBakey Heart & Vascular Center

Timing of Stroke/TIA in the ADVANCE Registry

Atrial Fibrillation is Already There: Quebec Experience

Von Willebrand Factor and Platelet Aggregates after TAVR

(F1)[Aggs] AORT PRE PE-FITC 2013-01-16 116.LMD : FL1 LOG

PARTNER 2A: Impact of Total Aortic Insufficiency on Mortality

Mortality

Association Versus Causation

Metholist DeBakey Hear & Vascular Center

CoreValve USIDE Trial: Impact of PVL on Late Mortality

Months Post-Procedure

Extreme Risk Study | Iliofemoral Pivotal

Intermediate Risk – Propensity Matched Outcomes for xAVR

Matched Population: All Cause Mortality

Piazza: JACC 2013;6:443

DeBakey Heart & Vascular Center

Metholist

Page 1 of 21	Catheterization and Cardiovascular Interventions
1	
2	
3	
4	
5	
7	
8	
9	
10	
11	Staged Percutaneous Treatment of Mitral Paravalvular Leak and Aortic Valve
12	
13	Pathology in Rheumatic Heart Disease
14	
16	First Case Description
17	
18	Kunal Saukar (1) Evanassas Pamas(1) Cian Paala Ussis(1)
19	Kunai Sarkar (1) Francesco Komeo(1) Gian Faolo Ussia(1)
20	
21	
22	
24	 Department of Cardiovascular Disease, Tor Vergata University of Rome,
25	
26	Rome. Italy
27	
28	
30	
31	
32	Address for Correspondence:
33	

Metholist DeBakey Heart & Vascular Center

Bicuspid Aortic Valve

Structural Heart Disease

Transcatheter Aortic Valve Implantation for Patients With Severe Bicuspid Aortic Valve Stenosis

 Kentaro Hayashida, MD, PhD, FESC; Erik Bouvier, MD; Thierry Lefèvre, MD, FSCAI, FESC; Bernard Chevalier, MD, FSCAI, FESC; Thomas Hovasse, MD; Mauro Romano, MD;
 Philippe Garot, MD, FESC; Yusuke Watanabe, MD; Arnaud Farge, MD; Patrick Donzeau-Gouge, MD; Bertrand Cormier, MD; Marie-Claude Morice, MD, FESC

- Background—Bicuspid aortic valve (BAV) is regarded as a relative contraindication to transcatheter aortic valve implantation attributable to the risk of uneven expansion of the bioprosthesis. The purpose of this study was to evaluate the efficacy and safety of transcatheter aortic valve implantation in patients with BAV.
- *Methods and Results*—Of 470 patients included in our prospective transcatheter aortic valve implantation database (October 2006–January 2012), 229 consecutive patients undergoing both echocardiography and multidetector computed tomography were analyzed. We compared clinical outcomes in patients with vs patients without BAV. In this series of 229 patients, BAV was detected by multidetector computed tomography in 21 patients (9.2%). BAV was identified by transthoracic and transoesophagal echocardiography in only 9 of these 21 patients. Patients were 83.1±6.6 years old, and European system for cardiac operative risk evaluation score was $20.0\% \pm 11.4\%$. The BAV group was similar to the non-BAV group except for diabetes mellitus (4.8% vs 24.0%; *P*=0.05). The aortic annulus diameter in BAV patients was not significantly larger by multidetector computed tomography (24.7±3.0 vs 23.7±1.9 mm; *P*=0.07). The CoreValve was used more frequently in the BAV group (47.6% vs 16.3%; *P*=0.002). There was no significant difference in device success (100% vs 92.8%; *P*=0.37), risk of annulus rupture (0% vs 1.4%; *P*=1.00), or valve migration (0% vs 1.4%; *P*=1.00) in BAV patients compared with non-BAV patients. Postprocedural mean gradient (10.0±3.4 vs 9.7±4.1 mm Hg; *P*=0.58), aortic regurgitation ≥ 2 of 4 (19.0% vs 14.9%; *P*=0.54), 30-day mortality (4.8% vs 8.2%; *P*=1.00), and 30-day combined safety end point (14.3% vs 13.5%; *P*=1.00) were also similar in both groups.
- Conclusions—In selected BAV patients, transcatheter aortic valve implantation may be associated with low complication rate, efficacy, and acceptable outcomes similar to those in non-BAV patients. (Circ Cardiovasc Interv. 2013;6:284-291.)

Key Words: aortic stenosis
bicuspid aortic valve
computed tomography
chocardiography
transcatheter
aortic valve implantation

Transcatheter aortic valve implantation (TAVI) for treatment of aortic stenosis (AS) in high-risk patients has emerged as a promising therapeutic alternative to conventional surgical aortic valve replacement. Although the basic technique is reaching relative maturity, there is a paucity of data regarding patients who have not been included in recent clinical trials.

Bicuspid aortic valve (BAV) is a relatively common anomalv that is reported in 0.5% to 2.0% of the general popula-

DeBakey Heart & Vascular Center Although initial TAVI experience in patients with BAV has been described in several reports,⁶⁻⁸ few data are available on the comparative feasibility and efficacy of TAVI in BAV compared with non-BAV.

The purpose of this study was to evaluate the efficacy and safety of TAVI in patients with the anatomic variation of the aortic valve described as BAV (in patients with BAV anatomy).

N/F-41-----

Outcomes After TAVR for Bicuspid Aortic Valves

	BAV (n=21)	Non-BAV (n=208)
Perioprocedural MI (%)	0	0.5
Periprocedural Stroke (%)	0	2.9
Annular Rupture (%)	0	1.3
Valve Migration (%)	1.3	1.4
Coronary Occlusion (%)	4.8	1.9
Aortic Regurgitation \geq 2 (%)	19.0	14.9
Aortic Regurgitation \geq 3 (%)	0	1.0
30 Day mortality (%)	14.3	13.5

Hayashida. Circ Interventions 2013;6:284

Methodist

DeBakey Heart & Vascular Center

Valve in Valve

Metholist DeBakey Heart & Vascular Center

TransValvular Gradients After Valve in Valve Implant for Degenerated Bioprostheses

Dvir D et al. Circulation 2012;126:2335-2344

St. Jude Medical Portico

Metholist DeBakey Heart & Vascular Center

Unique self expanding stent design provides the ability to...

Re-sheath*

Reposition

Retrieve*

... the valve at implant site

Bovine and porcine pericardial valve with Linx Anti-calcification technology **

LinxAC technology is used on SJM EpicTM and TrifectaTM surgical aortic valves

Open stent cell design allows access to coronaries and low crimp profile

Tissue cuff designed to minimize PV leak

Low placement of leaflets/cuff within the stent frame allows for minimal protrusion into the LVOT

CE Mark Trial Q4 2011 US/IDE Q3 2012

Until fully deployed ** There is no clinical data currently available that evaluates the long-term impact of anticalcification tissue treatment in humans.

BSC Lotus Valve

DeBakey Heart & Vascular Center

Direct Flow Medical *Transcatheter Aortic Valve System*

Valve loaded in Delivery System

Valve Inflated & Steering System

mestigational devicement for sale in or outside the United States

DeBakey Heart & Vascular Center

Valve Unsheathed

Valve in Retrieval Basket

46

Aortic Ring

Ventricular Ring

Investigational devicement for sale in or outside the United States

DeBakey Heart & Vascular Center

47

Check Valves