The Future of intravascular imaging : Is there light or sound at the end of the tunnel? Hybrid Imaging

Jung Ho Heo MD, PhD

Kosin University Hospital Busan, Korea

From: A Heart With 67 Stents

Jum Coll Cardiol. 2010;56(19):1605-1605. doi:10.1016/j.jacc.2010.02.077

To improve cardiovascular outcomes

Progress of coronary stent technology

Antithrombotic therapy

The use of novel diagnostic approaches

Between January 2008 and December 2011, 5097 pts underwent PCI at Asan Medical Center, Seoul, Korea and were followed for 1 year.

Park et al. Eur Heart J, in press

Tools in the Cath Lab: Physiology, Anatomy, and Biology

The new "watchful eye" of interventional cardiologists..

Intravascular Imaging

OCT vs Other Imaging Modalities

	OCT	IVUS	CA	MSCT	MRI	Angioscopy
	6		A			Normal Pigmented Non-pigmente
Resolution	5-20	80-150	200	300	300	200
Time aspect	Real-time	Real-time	Real-time			Real-time
Time aspect II	2-50 sec	20-50 sec				30 sec
·	IR-light	Ultrasound	X-Ray	X-Ray	Magnetic res	Visible light
Type of scan						
source	Layer	Layer	Bloodflow	Density	Density	Surface
Imaging target						

Some people think that...

JACC: CARDIOVASCULAR IMAGING © 2009 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER INC.

EDITORIAL COMMENT

The Vulnerable Plaque "Hypothesis"

Promise, but Little Progress*

Steven E. Nissen, MD

Cleveland, Ohio

A PubMed search using the terms "vulnerable plaque" or "high-risk" plaque yields >2,000 references to journal articles published over the past 20 years. Indeed, few concepts in cardiovascular medicine have achieved such intense scientific interest over such a long duration. During this 20-year period, many diagnostic techniques designed to "detect" vulnerable plaques have come and gone. In each case, a flurry of promising "findings" has been followed by a sobering reality check. These include thermography, spectroscopy, palpography, virtual histology, optical coherence tomography, and many more (1-5). A large number of startup companies with "breakthrough" approaches have come and gone, nearly all leaving investors with empty pockets, but no progress. What has gone wrong?

It is time to face reality. Much of the contemporary concept of vulnerable plaque is fundamentally flawed or overly simplistic, and most approaches to detection are poorly conceived.

ORIGINAL ARTICLE

A Prospective Natural-History Study of Coronary Atherosclerosis

Gregg W. Stone, M.D., Akiko Maehara, M.D., Alexandra J. Lansky, M.D., Bernard de Bruyne, M.D., Ecaterina Cristea, M.D., Gary S. Mintz, M.D., Roxana Mehran, M.D., John McPherson, M.D., Naim Farhat, M.D., Steven P. Marso, M.D., Helen Parise, Sc.D., Barry Templin, M.B.A., Roseann White, M.A., Zhen Zhang, Ph.D., and Patrick W. Serruys, M.D., Ph.D., for the PROSPECT Investigators*

PROSPECT: Multivariable Correlates of Non Culprit Lesion Related Events

Independent predictors of lesion level events by logistic regression analysis

<u>Variable</u>	<u>OR [95% CI]</u>	<u>P value</u>
PB _{M A} ≥70%	4.99 [2.54. 9.79]	<0.0001
VH-TCFA	3.00 [1.68, 5.37]	0.0002
MLA ≤4.0 mm²	2.77 [1.32, 5.81]	0.007
Lesion length ≥11.6 mm	1.97 [0.94, 4.16]	0.07
EEM _{MLA} <14.3 mm ²	1.30 [0.62, 2.75]	0.49

Variables entered into the model: Minimal luminal area (MLA); plaque burden at the MLA (PB_{MLA}); external elastic membrane at the MLA (EEM_{MLA}) <median; lesion length \geq median (mm); VH-TCFA.

N Engl J Med 2011; 364:226-235

Lesson learnt...

A quarter of century later, IVUS... is a IIB C guideline recommendation for LM. That's all...

ESC/EACTS GUIDELINES

ESC guidelines for myocardial revascularization: **Recommendations for specific percutaneous coronary** intervention devices and pharmacotherapy

IVUS-guided stent implantation may be considered for unprotected left main PCI. IIB C

Class IIb		Usefulness/efficacy is less well established by evidence/opinion.			
Level of	Conse	ensus of opinion of the experts and/or			
evidence C	small	studies, retrospective studies, registries.			

Meta-analysis of Randomized Trials of IVUS vs Angiographic Guided BMS implantation (n=2193 pts)

IVUS guidance was associated with significantly lower rate of

- Angiographic restenosis (22.2% vs. 28.9%; OR 0.64, p=0.02)
- Repeat revascularization (12.6% vs. 18.4%; OR 0.66, p=0.004)
- Overall MACE (19.1% vs. 23.1%; OR 0.69, p=0.03)
- But no significant effect on MI (p=0.51) or mortality (p=0.18).
- ST was not reported

Parise et al. Am J Cardiol. 2011;107:374-82

Stent Thrombosis P Roy 2008 0.59 (0.39, 0.89) 50.50 2009 3.00 (0.12, 76.85) SJ Park 0.82 J Jakabcin 2010 0.67 (0.15, 3.00) 3.82 2010 0.28 (0.06, 1.28) 3.73 SH Kim BE Claessen 2011 0.60 (0.10, 3.51) 2.75 JS Kim 2011 0.33 (0.04, 2.96) 1.79 SH Hur 2011 0.72 (0.44, 1.17) 36.59 KW Park 2012 0.52 (0.10, 2.68) 2.93 0.18 (0.05, 0.61) SL Chen 2012 5.19 **Overall** 0.58 (0.44, 0.77)100.00 100 10 0.1 **Favors IVUS** Favors Non-IVUS

Meta-Analysis of 11 Studies (n=19,619 patients)

Compared with angiographyguidance, IVUS-guided DES implantation was associated with a reduced incidence of

- Death (HR: 0.59, 95% CI: 0.48-0.73, p<0.001)
- Stent thrombosis (HR: 0.58, 95% CI: 0.44-0.77, p<0.0001)
- Major adverse cardiac events (HR: 0.87, 95% CI: 0.78-0.96, p=0.008)

In the meta-analysis of 19,619 patients, mortality was significantly reduced by 27%...

A Study	Year	Morta	lity	HR (95% CI)	Weight %
P Roy [18]	2008		-	0.81 (0.55, 1.20)	57.42
SJ Park [21]	2009			0.39 (0.15, 1.02)	9.76
JS Kim [20]	2011		-	0.58 (0.21, 1.61)	8.64
BE Claessen [19]	2011	-	-	0.74 (0.37, 1.47)	18.84
KW Park [26]	2012		-	1.67 (0.40, 6.97)	4.39
SL Chen [27]	2012	_		0.20 (0.01, 4.23)	0.96
Overall (I-squared	l=0.0%, <i>p=</i> 0.537)	Ś		0.73 (0.54, 0.99)	100.00
←IVU	S Guidanc	i i ce	Non IVUS (ho Guidance	

Zhang et al. EuroIntervention

Impact of Intravascular Ultrasound-Guided Percutaneous Coronary Intervention on Long-Term Clinical Outcomes in a Real World Population

Hur et al. CCI 2013

Impact of intravascular ultrasound guidance in routine percutaneous coronaryintervention for conventional lesions: data from the EXCELLENT trial

Subgroups		Pt No.	Hazard Ra	tio (95% CI)	Int P ^{**}
Sex	Men	597				0 670
	Women	329		<u> </u>		0.078
Age	< 70	674				0.616
	≥70	252 -		<u>+-</u>		0.010
Diabetes	Yes	348		_		0.011
	No	578		é		0.911
Long lesion	≥20 mm	435		<u> </u>		0.1.11
	<20 mm	463				0.141
Small vessel	<3.0 mm	246 -		<u> </u>		0.050
(reference diameter)	≥3.0 mm	678		<u> </u>		0.356
Bifurcation	Yes	264		-	_	
	No	662		<u>+-</u>		0.446
Multivessel disease	Yes	465		—		
	No	461	_	<u> </u>		0.836
Ostial lesion	Yes	167		<u> </u>		
	No	759		—		0.721
Overall						0.047
		0.25	1	.⊢ 4	16	-
		Favorivi	JS†			

Park et al. IJC 2012

ADAPT-DES

Assessment of Dual AntiPlatelet Therapy with Drug-Eluting Stents

Witzenbichler, et al. Circulation, Nov 2013

Reason for IVUS Use

Witzenbichler, et al. Circulation Nov 2013

IVUS Use and Definite/Probable ST Within 2 Years

IVUS Use and MI Within 2 Years

IVUS Use and MACE (Definite/Probable ST, Cardiac Death, MI) Within 2 Years

Association of IVUS Use with MACE (Definite/Probable ST, Cardiac Death, MI) in Relation to Index Presentation

IVUS-Guided Percutaneous Coronary Interventions: An Ongoing Odyssey? Lorenz Räber and Stephan Windecker

Circulation. published online November 26, 2013; Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231 Copyright © 2013 American Heart Association, Inc. All rights reserved. Print ISSN: 0009-7322. Online ISSN: 1524-4539

Lesson learnt...

Optical coherence tomography[☆]

CARDIOVASCULAR RADIATION MEDICINE

E. Regar^aJ.A. Schaar^aE. Mont^bR. Virmani^bP.W. Serruys^{a,*}

Received 16 December 2003; accepted 17 December 2003

"Intravascular OCT allows for accurate assessment of vessel structures close to the luminal side. Clinical application is feasible. To date, however, the clinical relevance of OCT findings in coronary arteries is unclear and further validation of OCT imaging is mandatory."

A decade later, OCT is still "a valuable research tool". That's all...

ESC guidelines for myocardial revascularization: Recommendations for specific percutaneous coronary intervention devices and pharmacotherapy ESC/EACTS GUIDELINES

"Optical coherence tomography (OCT) is a light-based modality of intravascular imaging with higher spatial resolution than IVUS (15 vs. 100 µm). Its penetration is lower than IVUS but it provides detailed imaging of the endoluminal borders. At present, OCT is a valuable research tool." Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc.

EDITORIAL COMMENT

Intracoronary Optical Coherence Tomography

Are We Getting Too Close to the Light?*

Stephen J. Nicholls, MBBS, PHD,[†] Rishi Puri, MBBS[‡]

Adelaide, Australia; and Cleveland, Ohio

Greek mythology of Icarus

Lesson learnt... Although some evidences are emerging...

Angiography alone versus angiography plus optical coherence tomography to guide decision-making during percutaneous coronary intervention: the Centro per la Lotta contro l'Infarto-Optimisation of Percutaneous Coronary Intervention (CLI-OPCI) study

In the analysis of 335 matched pair (670 patients), mortality was significantly reduced by 52% ...

Table 4. Clinical results.

	Angiographic guidance group (n=335)	Angiographic plus OCT guidance group (n=335)	<i>p</i> -value
In-hospital events			
Cardiac death	3 (0.9%)	2 (0.6%)	1.0
Non-fatal myocardial infarction	22 (6.5%)	13 (3.9%)	0.118
Events at 1-year follow-up			
Death	23 (6.9%)	11 (3.3%)	0.035
Cardiac death	15 (4.5%)	4 (1.2%)	0.010
Myocardial infarction	29 (8.7%)	18 (5.4%)	0.096
Target lesion repeat revascularisation	11 (3.3%)	11 (3.3%)	1.0
Definite stent thrombosis	2 (0.6%)	1 (0.3%)	1.0
Cardiac death or myocardial infarction	43 (13.0%)	22 (6.6%)	0.006
Cardiac death, myocardial infarction, or repeat revascularisation	50 (15.1%)	32 (9.6%)	0.034

Safety and Feasibility of FD-OCT Imaging

Imola F et al. EuroIntervention 2010;6:575-81

OCT for Intracoronary Imaging

Atherosclerosis

- Normal Vessel Wall
- Different Plaque
 Types
- Plaque Progression
- Plaque Rupture

Stent Evaluation

- Neointimal Hyperplasia
- Pattern of Restenosis
- Strut Coverage and Apposition
- Stent thrombosis

Tunica Intima

Value of Combined Assessment Grayscale IVUS, IVUS-VH and OCT

Vulnerable Plaque characteristics

Thin cap fibroma-atheroma TCFA Detection Algorithm ?

AIT NC

DC

FC

- = adaptive intimal thickening = necrotic core FF
 - = fibrofatty
 - = dense calcium
 - = fibrocalcic

FT = fibrotic

FA

- Ca FA = calcium fibroatheroma
 - = fibroatheroma
- Ca TCFA = ca-thin-cap-fibroatheroma
- TCFA = thin-cap-fibroatheroma

OCT/IVUS VH TCFA Detection Algorithm

= fibrocalcic

4

TCFA = thin-cap-fibroatheroma

Fibrous plaque

Fibrocalcific plaque

OCT/IVUS VH TCFA Detection Algorithm – Hector Garcia

Thick Cap Fibroatheroma

Thin Cap Fibroatheroma (TCFA)

3 vessel imaging using IVUS Virtual Histology:

- Culprit vessel: Post-treatment imaging of the stented segment and distal segment
- Non-culprit vessel: >40 mm of proximal coronary artery

3 vessel imaging using IVUS Virtual Histology:

- Culprit vessel: Post-treatment imaging of the stented segment and distal segment
- Non-culprit vessel: >40 mm of proximal coronary artery

Primary Objective

•To determine the effects of rosuvastatin on compositional measures of coronary plaque in a non-intervened coronary segment. Specifically, the change from baseline in Virtual Histology[™] necrotic core volume at the end of week 52.

3 vessel imaging using OCT:

- Culprit vessel: Post-treatment imaging of the stented segment and distal segment
- Non-culprit vessel: >40 mm of proximal coronary artery

3 vessel imaging using OCT:

- Culprit vessel: Post-treatment imaging of the stented segment and distal segment
- Non-culprit vessel: >40 mm of proximal coronary artery

Secondary Objective

•To determine the effects of rosuvastatin on fibrous cap thickness of coronary plaque in a nonintervened coronary segment. Specifically, the change from baseline in OCT cap thickness at the end of week 52.

Stent underexpansion Geographical miss

(Minor) findings not seen on IVUS Malapposition Tissue protrusion Edge dissections

What are the intravascular imaging modalities in interventional cardiology: current and future technologies

Current

- Intravascular ultrasound (IVUS)
 - Grey Scale (20, 40, 45 Mhz)
 - Radiofrequency backscattering (Virtual histology, Palpography, Integrated backscatter IVUS and iMAP)
- Optical coherence tomography
 - **2D** (100, 160, 180 frames/sec)
 - 3D (offline/ on line)
 - Hemodynamic parameter derived from 3D imaging
- NIR infrared spectroscopy
- Combined IVUS and NIRS (FDA approved)

Future

- Intravascular ultrasound (IVUS)
 - High-frequency
 - Focused acoustic tomography (FACT)
- Intravascular imaging combined with interventional devices
- Optical coherence tomography
 - **3D OCT** with tissue characterization
 - Micro OCT
 - Super fast OCT (100mm/s)
- Hybrid intravascular imaging
 - OCT + NIR
 - OCT + IVUS
 - IVUS + TRFS
 - IVUS + IVPA

#current technology: Hemodynamic parameter derived from 3D imaging Fusion of 3D-QCA and OCT

#Future technology: Intravascular imaging combined with interventional devices

Atherectomy with OCT Avinger Ocelot

IVUS guided subintimal reentry device

Micro OCT

Leukocytes tethered to the endothelium e NC **Cholesterol crystals** and Necrotic Core CC Cap Leukocytes Cluster at the NC Site of Polymer NC Fracture

Journal of the American College of Cardiology © 2013 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 61, No. 13, 2013 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2012.10.057

STATE-OF-THE-ART PAPER

Hybrid Intravascular Imaging

Current Applications and Prospective Potential in the Study of Coronary Atherosclerosis

Christos V. Bourantas, MD, PHD,* Hector M. Garcia-Garcia, MD, PHD,* Katerina K. Naka, MD,† Antonios Sakellarios, BSC,‡ Lambros Athanasiou, BSC,‡ Dimitrios I. Fotiadis, PHD,‡ Lampros K. Michalis, MD,† Patrick W. Serruys, MD, PHD* *Rotterdam, the Netherlands; and Ioannina, Greece*

- Intravascular imaging allowed us for the first time to study in vivo plaque morphology and atherosclerotic evolution
- Today numerous invasive modalities are available: integrated backscatter analysis (IB)-IVUS, VH-IVUS, NIRS, OCT, IVPA, IV-MRI spectroscopy, IV-MRI, Raman spectroscopy and time resolved fluorescence spectroscopic (TRFS) that permit imaging of the plaque
- IB-IVUS, VH-IVUS, NIRS, OCT and CTCA have been used in clinical studies and allowed detection of plaque features related with future adverse events

Catheterization and Cardiovascular Interventions 00:00–00 (2013)

Original Studies

Expert Consensus Statement on the Use of Fractional Flow Reserve, Intravascular Ultrasound, and Optical Coherence Tomography: A Consensus Statement of the Society of Cardiovascular Angiography and Interventions

Amir Lotfi,¹ MD, FSCAI, Allen Jeremias,² MD, FSCAI, William F. Fearon,³ MD, FSCAI, Marc D. Feldman,⁴ MD, FSCAI, Roxana Mehran,⁵ MD, John C. Messenger,⁶ MD, FSCAI, Cindy L. Grines,⁷ MD, FSCAI, Larry S. Dean,⁸ MD, FSCAI, Morton J. Kern,⁹ MD, FSCAI, and Lloyd W. Klein,^{10*} MD, FSCAI

Key words: fractional flow reserve; imaging; intravascular ultrasound; imaging; optical coherence tomography; interventional devices/innovation

Intravascular ultrasound (IVUS).

Definitely Beneficial.

IVUS is an accurate method for determining optimal stent deployment (complete stent expansion and apposition and lack of edge dissection or other complications after implantation), and the size of the vessel undergoing stent implantation.

Probably Beneficial.

IVUS can be used to appraise the significance of LMCA stenosis and, employing a cutoff MLA¼6 mm2, assess whether revascularization is warranted.

Possibly Beneficial.

IVUS can be useful for the assessment of plaque morphology.

No Proven Value/Should be Discouraged.

IVUS measurements for determination of non-LMCA lesion severity should not be relied upon, in the absence of additional functional evidence, for recommending revascularization.

Optical Coherence Tomography (OCT).

Probably Beneficial.

Determination of optimal stent deployment (sizing, apposition, and lack of edge dissection), with improved resolution compared with IVUS.

Possibly Beneficial.

OCT can be useful for the assessment of plaque morphology.

No Proven Value/Should be Discouraged.

OCT should not be performed to determine stenosis functional significance.

THE TRUE SIGN OF INTELLIGENCE IS NOT KNOWLEDGE BUT IMAGINATION.

I NEVER THINK OF THE FUTURE - IT COMES SOON ENOUGH.

Albert Einstein

German Theoretical-Physicist (1879-1955)

Albert Einstein

German Theoretical-Physicist (1879-1955)

QuoteHD.com