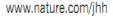
Impact of Hypertension on 5-year Clinical Outcomes in Patients with Significant Coronary Artery Spasm; A Propensity Score Matching Study

Byoung Geol Choi, <u>Seung-Woon Rha</u>\*, Se Yeon Choi, Jae Kyeong Byun Shaopeng Xu, Harris Abdullah Ngow, Jabar Ali, Jae Joong, Lee, Kwang No Lee, Sunki Lee, Ji Bak Kim, Jin Oh Na, Cheol Ung Choi, Hong Euy Lim, Jin Won Kim, Eung Ju Kim, Chang Gyu Park, Hong Seog Seo, and Dong Joo Oh

Cardiovascular Center, Korean University Guro Hospital, Seoul, Korea

#### **Disclosure Information**

### I have nothing to disclose.


Correspondence to Dr Rha ; swrha617@yahoo.co.kr

# Background

 Hypertension (HTN) is known to be a risk factor of significant coronary artery disease (CAD).

2. However, there is limited available data with larger study population regarding long-term clinical outcomes of HTN with coronary artery spasm (CAS) in real world clinical practice, particularly in a series of Korean population.



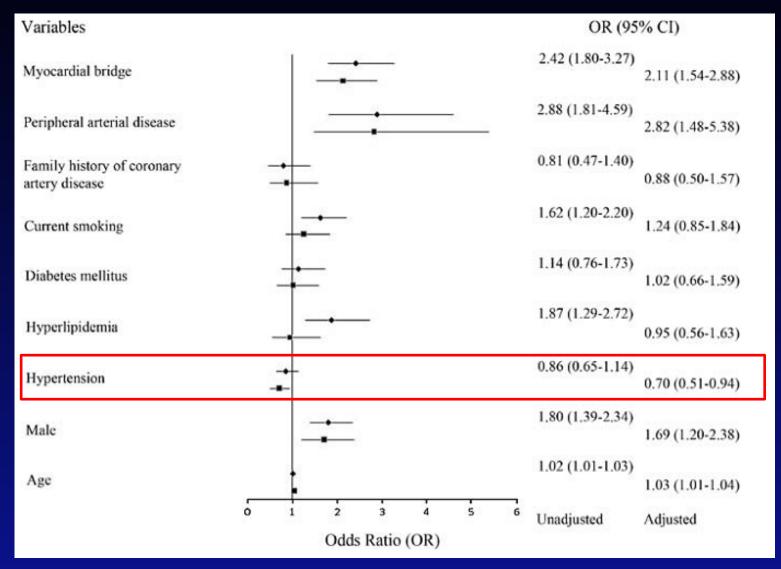


#### ORIGINAL ARTICLE

# Impact of hypertension on coronary artery spasm as assessed with intracoronary acetylcholine provocation test

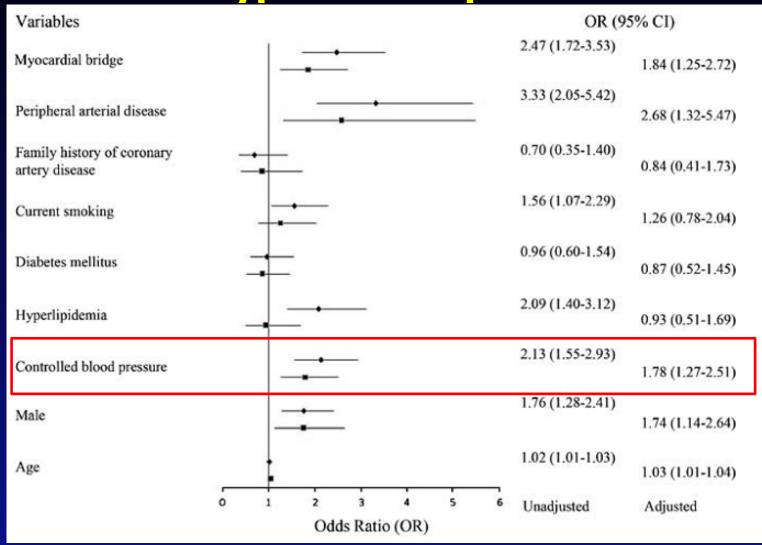
K-Y Chen<sup>1</sup>, S-W Rha<sup>1</sup>, Y-J Li<sup>1</sup>, KL Poddar<sup>1</sup>, Z Jin<sup>1</sup>, Y Minami<sup>2</sup>, S Saito<sup>2</sup>, JH Park<sup>1</sup>, JO Na<sup>1</sup>, CU Choi<sup>1</sup>, HE Lim<sup>1</sup>, JW Kim<sup>1</sup>, EJ Kim<sup>1</sup>, CG Park<sup>1</sup>, HS Seo<sup>1</sup> and DJ Oh<sup>1</sup> <sup>1</sup>Department of Internal Medicine, Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea and <sup>2</sup>Department of Internal Medicine, Cardiovascular Center, Shonan Kamakura General Hospital, Kamakura, Japan

KY Chen, Rha SW et al. Journal of Human Hypertension (2010) 24, 77-85


# Hypertension and acetylcholine-induced coronary artery spasm

**Results**; Although the incidences of significant ACh-induced CAS were similar between hypertensive and normotensive patients (35.8 vs 39.2%, P=0.303), multivariate logistic analysis showed that hypertension was negatively associated with ACh-induced CAS (odds ratio: 0.70, 95%) confidence interval: 0.51–0.94, P=0.020). The angiographic characteristics of ACh-induced CAS were similar between these two groups. Subgroup analysis regarding the impact of the status of blood pressure control on CAS showed that hypertensive patients with controlled blood pressure had a significantly higher incidence of CAS than those with uncontrolled blood pressure (45.2 vs 27.9%, P=0.001), and that uncontrolled blood pressure was negatively associated with ACh-induced CAS (odds ratio: 0.56, 95% confidence interval: 0.40–0.79, P=0.001).

Conclusion, despite the expected endothelial dysfunction, <u>hypertension and</u> <u>uncontrolled blood pressure are negatively associated with CAS</u>, suggesting that the mechanisms and risk factors of CAS may be significantly different from those of coronary artery disease.


KY Chen, Rha SW et al. Journal of Human Hypertension (2010) 24, 77-85

#### The predictors for acetylcholine-induced significant coronary artery spasm



KY Chen, Rha SW et al. Journal of Human Hypertension (2010) 24, 77–85

#### The predictors for acetylcholine-induced significant coronary artery spasm in hypertensive patients



KY Chen, Rha SW et al. Journal of Human Hypertension (2010) 24, 77–85

# Methods

#### **1. Study Population**

A total of 3,349 consecutive CAS pts without significant coronary artery disease who underwent Ach provocation test were enrolled between November 2004 and May 2014.

#### 2. Study Groups

Hypertension group (HTN; n=1,489) Normotension group (NTN: n=1,860)

# Methods

#### 3. Intracoronary Ach Provocation Test

- Ach was injected by incremental doses of 20µg (A1), 50 µg (A2) and 100 µg (A3) into the left coronary artery.
- Significant CAS was defined as transient >70% luminal narrowing with/without ischemic ST-T Change or chest pain.

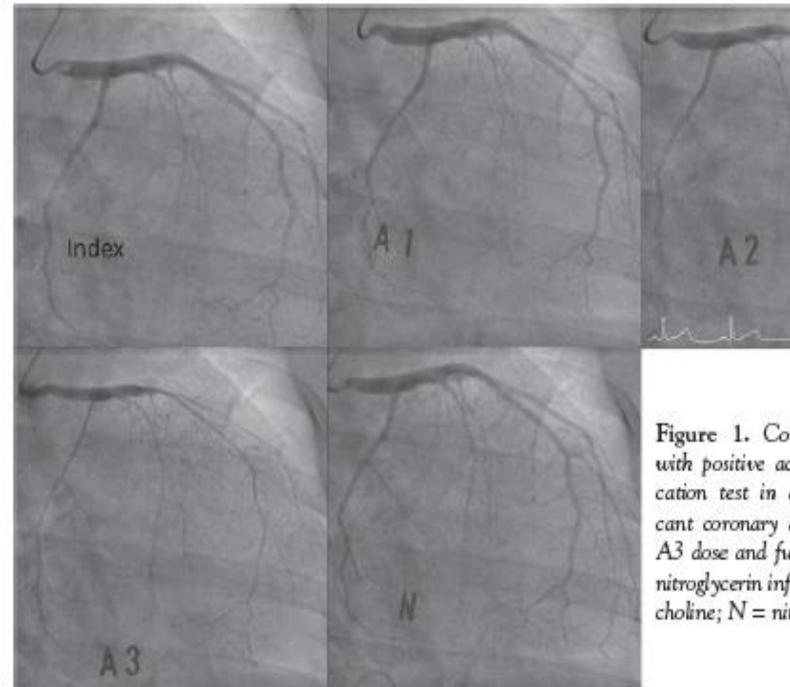



Figure 1. Coronary angiogram with positive acetylcholine provocation test in a patient. Significant coronary artery spasm with A3 dose and fully recovered after nitroglycerin infusion. A = acetylcholine; N = nitroglycerin.

## **Statistics**

- 1. All statistical analyses were performed using SPSS 20.0.
- 2. Continuous variables were expressed as means  $\pm$  standard deviation and were compared using Student's t-test.
- 3. Categorical data were expressed as percentages and were compared using chi-square statistics or Fisher's exact test.
- 4. A *P*-value of 0.05 was considered statistically significant.
- 5. Multivariate logistic regression analysis, which included baseline confounding factors, was used for assessing the independent impact factors.

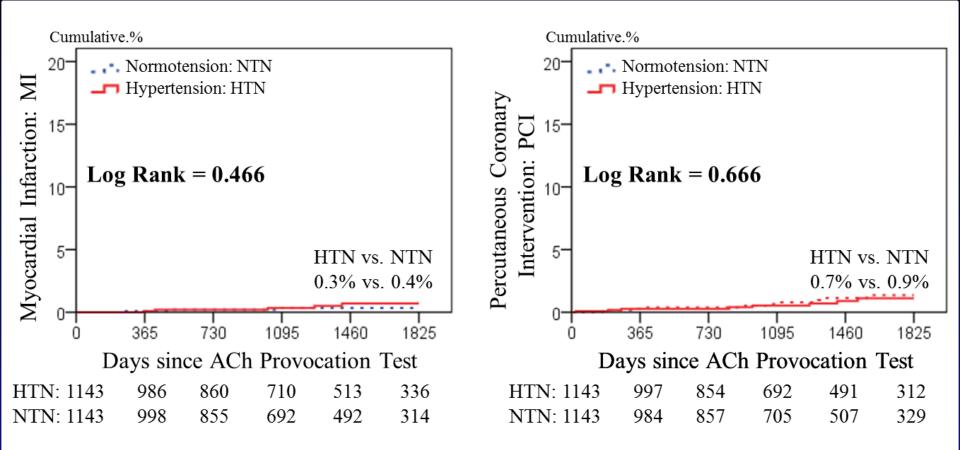
# **Statistics**

- To account for the selection bias of treatment methods, we calculated *propensity score* predicting probability for HTN in each patient.
- 7. The covariates that were adjusted for Gender (male), Age, blood pressure, left Ventricular ejection fraction%, factors of risk (hypertension, diabetes, dyslipidemia, current smokers, current alcoholics), medication Treatments (diltiazem, nitrate, trimetazidine, nicorandil, molsidomine, calcium channel blockers, beta blokers, diuretics, angiotensin receptor blockers, angiotensin converting enzyme inhibitors, aspirin, clopidogrel, cilostazol, warfarin, statins), angiographic and clinical parameters (Left anterial decending, Left circumflex, CAS narrowing length, EKG change, and chest pain).
- 8. The C-statistic for the logistic regression model that was used to calculate the propensity score matching for the 2 groups was 0.720.

Results

#### **Baseline Clinical Characteristics**

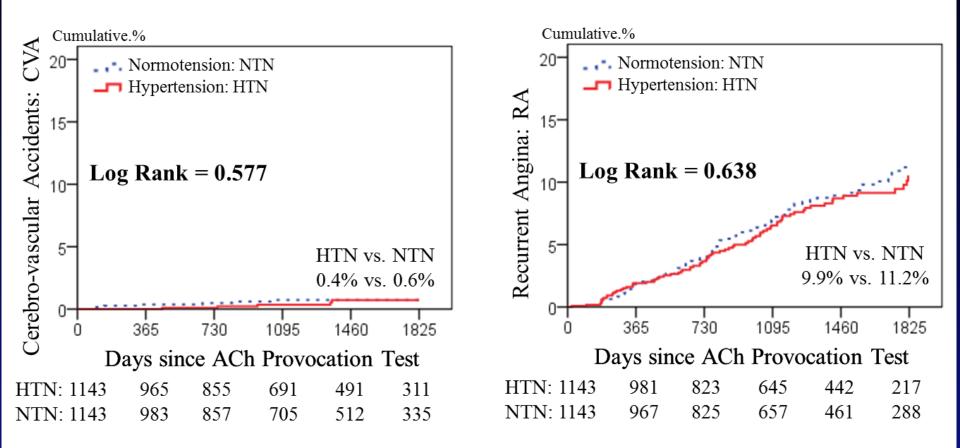
|                                       | Entire Patients    |                    |                    |         | Propensity Score-Matched Patients |                    |                    |         |  |
|---------------------------------------|--------------------|--------------------|--------------------|---------|-----------------------------------|--------------------|--------------------|---------|--|
| Variable, N (%)                       | Total<br>(N=3349)  | HTN<br>(N=1489)    | NTN<br>(N=1860)    | p Value | Total<br>(N=2286)                 | HTN<br>(N=1143)    | NTN<br>(N=1143)    | p Value |  |
| Gender (male)                         | 1738 (51.8)        | 784 (52.6)         | 954 (51.2)         | 0.433   | 1217 (53.2)                       | 606 (53.0)         | 611 (53.4)         | 0.834   |  |
| Age                                   | 56.6 <u>+</u> 11.1 | 59.8 <u>+</u> 10.5 | 54.1 <u>+</u> 11.6 | < 0.001 | 58.2 <u>+</u> 10.1                | 58.2 <u>+</u> 10.4 | 58.3 <u>+</u> 9.76 | 0.794   |  |
| Blood pressure; BP                    |                    |                    |                    |         |                                   |                    |                    |         |  |
| Systolic BP                           | 134 <u>+</u> 19    | 139 <u>+</u> 20    | 129 <u>+</u> 18    | < 0.001 | 135 <u>+</u> 18                   | 136 <u>+</u> 19    | 135 <u>+</u> 18    | 0.356   |  |
| Diastolic BP                          | 77.7 <u>+</u> 12.5 | 79.5 <u>+</u> 12.6 | 76.2 <u>+</u> 12.4 | < 0.001 | 78.8 <u>+</u> 12.5                | 78.8 <u>+</u> 12.5 | 78.7 <u>+</u> 12.6 | 0.854   |  |
| Heart rate                            | 70.2 <u>+</u> 12.5 | 70.8 <u>+</u> 12.7 | 69.7 <u>+</u> 12.3 | 0.015   | 70.2 <u>+</u> 12.5                | 70.4 <u>+</u> 12.7 | 70.0 <u>+</u> 12.2 | 0.480   |  |
| Pulse pressure                        | 56.3 <u>+</u> 15.8 | 60.3 <u>+</u> 17.4 | 53.1 <u>+</u> 14.6 | < 0.001 | 57.1 <u>+</u> 15.6                | 57.4 <u>+</u> 16.4 | 56.8 <u>+</u> 14.9 | 0.333   |  |
| Left Ventricular ejection fraction, % | 58.9 <u>+</u> 3.8  | 58.9 <u>+</u> 3.6  | 59.0 <u>+</u> 3.9  | 0.744   | 58.9 <u>+</u> 4.2                 | 59.0 <u>+</u> 3.7  | 58.8 <u>+</u> 4.6  | 0.510   |  |
| Factors of Risk                       |                    |                    |                    |         |                                   |                    |                    |         |  |
| Diabetes                              | 565 (16.8)         | 349 (23.4)         | 216 (11.6)         | < 0.001 | 381 (16.6)                        | 193 (16.8)         | 188 (16.4)         | 0.779   |  |
| New-onset diabetes                    | 130 (3.8)          | 74 (4.9)           | 56 (3.0)           | 0.004   | 94 (4.1)                          | 49 (4.2)           | 45 (3.9)           | 0.674   |  |
| Insulin                               | 65 (1.9)           | 46 (3.0)           | 19 (1.0)           | < 0.001 | 36 (1.5)                          | 17 (1.4)           | 19 (1.6)           | 0.737   |  |
| Medication                            | 354 (10.5)         | 229 (15.3)         | 125 (6.7)          | < 0.001 | 236 (10.3)                        | 121 (10.5)         | 115 (10.0)         | 0.680   |  |
| Dietary                               | 44 (1.3)           | 19 (1.2)           | 25 (1.3)           | 0.864   | 33 (1.4)                          | 15 (1.3)           | 18 (1.5)           | 0.599   |  |
| Dyslipidemia                          | 1089 (32.5)        | 593 (39.8)         | 496 (26.6)         | < 0.001 | 809 (35.3)                        | 402 (35.1)         | 407 (35.6)         | 0.827   |  |
| History smokers                       | 1122 (33.5)        | 499 (33.5)         | 623 (33.4)         | 0.991   | 760 (33.2)                        | 380 (33.2)         | 380 (33.2)         | ns      |  |
| Current smokers                       | 795 (23.7)         | 337 (22.6)         | 458 (24.6)         | 0.178   | 530 (23.1)                        | 263 (23.0)         | 267 (23.3)         | 0.843   |  |
| History alcoholics                    | 1297 (38.7)        | 567 (38.0)         | 730 (39.2)         | 0.490   | 873 (38.1)                        | 432 (37.7)         | 441 (38.5)         | 0.698   |  |
| Current alcoholics                    | 1189 (35.5)        | 515 (34.5)         | 674 (36.2)         | 0.322   | 800 (34.9)                        | 392 (34.2)         | 408 (35.6)         | 0.483   |  |


#### **Medication Treatments**

|                                          |                   | Entire Patients |                 |         |                   | Propensity Score-Matched Patients |                 |         |  |  |
|------------------------------------------|-------------------|-----------------|-----------------|---------|-------------------|-----------------------------------|-----------------|---------|--|--|
| Variable, N (%)                          | Total<br>(N=3349) | HTN<br>(N=1489) | NTN<br>(N=1860) | p Value | Total<br>(N=2286) | HTN<br>(N=1143)                   | NTN<br>(N=1143) | p Value |  |  |
| Diltiazem                                | 2741 (81.8)       | 1216 (81.6)     | 1525 (81.9)     | 0.809   | 1877 (82.1)       | 936 (81.8)                        | 941 (82.3)      | 0.785   |  |  |
| Nitrate                                  | 2194 (65.5)       | 951 (63.8)      | 1243 (66.8)     | 0.073   | 1492 (65.2)       | 730 (63.8)                        | 762 (66.6)      | 0.160   |  |  |
| Trimetazidine                            | 1784 (53.2)       | 795 (53.3)      | 989 (53.1)      | 0.899   | 1225 (53.5)       | 609 (53.2)                        | 616 (53.8)      | 0.769   |  |  |
| Molsidomine                              | 248 (7.4)         | 108 (7.2)       | 140 (7.5)       | 0.764   | 170 (7.4)         | 87 (7.6)                          | 83 (7.2)        | 0.750   |  |  |
| Nicorandil                               | 1070 (31.9)       | 484 (32.5)      | 586 (31.5)      | 0.538   | 739 (32.3)        | 360 (31.5)                        | 379 (33.2)      | 0.396   |  |  |
| Calcium channel blockers                 | 2833 (84.5)       | 1280 (85.9)     | 1553 (83.4)     | 0.049   | 1951 (85.3)       | 984 (86.0)                        | 967 (84.6)      | 0.315   |  |  |
| Beta blokers                             | 307 (9.1)         | 203 (13.6)      | 104 (5.5)       | < 0.001 | 231 (10.1)        | 150 (13.1)                        | 81 (7.0)        | < 0.001 |  |  |
| Diuretics                                | 301 (8.9)         | 219 (14.7)      | 82 (4.4)        | < 0.001 | 214 (9.3)         | 153 (13.3)                        | 61 (5.3)        | < 0.001 |  |  |
| Angiotensin receptor blockers            | 550 (16.4)        | 454 (30.4)      | 96 (5.1)        | < 0.001 | 405 (17.7)        | 323 (28.2)                        | 82 (7.1)        | < 0.001 |  |  |
| Angiotensin converting enzyme inhibitors | 138 (4.1)         | 96 (6.4)        | 42 (2.2)        | < 0.001 | 96 (4.1)          | 65 (5.6)                          | 31 (2.7)        | < 0.001 |  |  |
| Aspirin                                  | 544 (16.2)        | 323 (21.6)      | 221 (11.8)      | < 0.001 | 385 (16.8)        | 196 (17.1)                        | 189 (16.5)      | 0.696   |  |  |
| Clopidogrel                              | 179 (5.3)         | 100 (6.7)       | 79 (4.2)        | 0.002   | 136 (5.9)         | 67 (5.8)                          | 69 (6.0)        | 0.860   |  |  |
| Cilostazol                               | 63 (1.8)          | 40 (2.6)        | 23 (1.2)        | 0.002   | 41 (1.7)          | 24 (2.0)                          | 17 (1.4)        | 0.270   |  |  |
| Warfarin                                 | 39 (1.1)          | 19 (1.2)        | 20 (1.0)        | 0.590   | 27 (1.1)          | 11 (0.9)                          | 16 (1.3)        | 0.333   |  |  |
| Statins                                  | 1375 (41.0)       | 716 (48.0)      | 659 (35.4)      | < 0.001 | 999 (43.7)        | 504 (44.0)                        | 495 (43.3)      | 0.704   |  |  |

#### **Angiographic Characteristics**

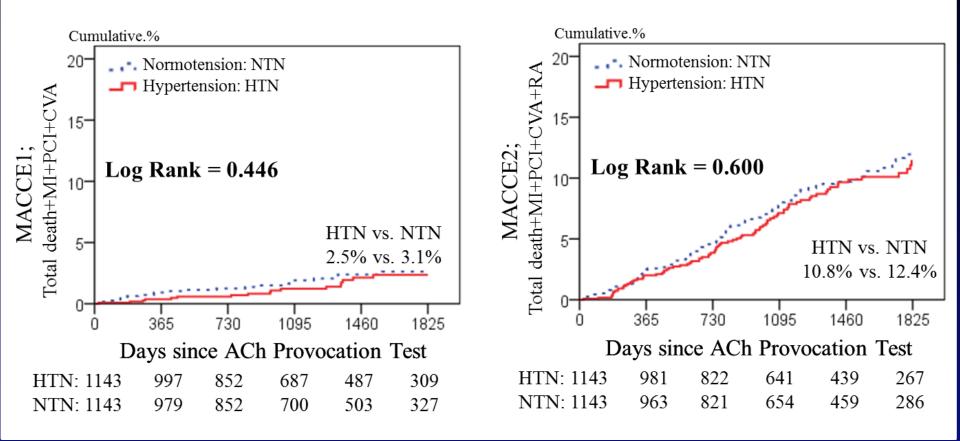
| Variable, N (%)                                                           | Entire Patients    |                 |                 |         | Propensity Score-Matched Patients |                 |                 |         |  |
|---------------------------------------------------------------------------|--------------------|-----------------|-----------------|---------|-----------------------------------|-----------------|-----------------|---------|--|
|                                                                           | Total<br>(N=3349)  | HTN<br>(N=1489) | NTN<br>(N=1860) | p Value | Total<br>(N=2286)                 | HTN<br>(N=1143) | NTN<br>(N=1143) | p Value |  |
| Quantitative coronary angiography; QCA                                    |                    |                 |                 |         |                                   |                 |                 |         |  |
| Minimum narrowing diameter, mm<br>(during Acetylcholine Provocation Test) | 0.7 ± 0.3          | 0.6 ± 0.3       | 0.7 ± 0.3       | 0.002   | 0.6 ± 0.3                         | 0.6 ± 0.3       | 0.6 ± 0.3       | 0.832   |  |
| Minimum narrowing diameter, %<br>(during Acetylcholine Provocation Test)  | 70.4 <u>+</u> 12.8 | 70.8 ± 12.4     | 70.0 ± 13.2     | 0.065   | 70.9 <u>+</u> 13.0                | 70.8 ± 12.6     | 71.0 ± 13.3     | 0.802   |  |
| Reference diameter, mm<br>(after nitroglycerin injection)                 | 2.3 ± 0.6          | 2.3 ± 0.5       | 2.4 ± 0.7       | < 0.001 | 2.3 ± 0.7                         | 2.3 ± 0.5       | 2.4 ± 0.8       | 0.326   |  |
| Acetylcholine dose                                                        |                    |                 |                 |         |                                   |                 |                 |         |  |
| A1 (20ug)                                                                 | 185 (5.5)          | 85 (5.7)        | 100 (5.3)       | 0.669   | 129 (5.6)                         | 69 (6.0)        | 60 (5.2)        | 0.409   |  |
| A2 (50ug)                                                                 | 1193 (35.6)        | 520 (34.9)      | 673 (36.1)      | 0.467   | 840 (36.7)                        | 399 (34.9)      | 441 (38.5)      | 0.073   |  |
| A3 (100ug)                                                                | 1969 (58.8)        | 882 (59.3)      | 1087 (58.4)     | 0.610   | 1315 (57.5)                       | 673 (58.9)      | 642 (56.1)      | 0.173   |  |
| Spasm site                                                                | 7 (0.2)            | 2 (0.1)         | 5 (0.2)         | 0.473   | 5 (0.2)                           | 2 (0.1)         | 3 (0.2)         | ns      |  |
| Left anterial decending                                                   | 3145 (93.9)        | 1396 (93.7)     | 1749 (94)       | 0.738   | 2145 (93.8)                       | 1070 (93.6)     | 1075 (94)       | 0.664   |  |
| Left circumflex                                                           | 1279 (38.1)        | 541 (36.3)      | 738 (39.6)      | 0.048   | 836 (36.5)                        | 422 (36.9)      | 414 (36.2)      | 0.728   |  |
| Spasm location                                                            | 19 (0.5)           | 7 (0.4)         | 12 (0.6)        | 0.503   | 14 (0.6)                          | 7 (0.6)         | 7 (0.6)         | ns      |  |
| Proximal                                                                  | 1614 (48.1)        | 625 (41.9)      | 989 (53.1)      | < 0.001 | 1053 (46.0)                       | 490 (42.8)      | 563 (49.2)      | 0.002   |  |
| Mid                                                                       | 3047 (90.9)        | 1369 (91.9)     | 1678 (90.2)     | 0.083   | 2077 (90.8)                       | 1038 (90.8)     | 1039 (90.9)     | 0.942   |  |
| Distal                                                                    | 2736 (81.6)        | 1223 (82.1)     | 1513 (81.3)     | 0.556   | 1868 (81.7)                       | 938 (82.0)      | 930 (81.3)      | 0.665   |  |
| Diffuse spasm (narrowing > 20mm)                                          | 2882 (86.0)        | 1277 (85.7)     | 1605 (86.2)     | 0.661   | 1966 (86.0)                       | 979 (85.6)      | 987 (86.3)      | 0.630   |  |
| Multi-vessel spasm                                                        | 1108 (33.0)        | 462 (31.0)      | 646 (34.7)      | 0.024   | 720 (31.4)                        | 363 (31.7)      | 357 (31.2)      | 0.787   |  |
| EKG change                                                                | 211 (6.3)          | 89 (5.9)        | 122 (6.5)       | 0.491   | 140 (6.1)                         | 68 (5.9)        | 72 (6.2)        | 0.727   |  |
| ST-segment elevation                                                      | 70 (2.0)           | 34 (2.2)        | 36 (1.9)        | 0.484   | 45 (1.9)                          | 26 (2.2)        | 19 (1.6)        | 0.292   |  |
| ST-segment depreesion                                                     | 75 (2.2)           | 29 (1.9)        | 46 (2.4)        | 0.307   | 51 (2.2)                          | 21 (1.8)        | 30 (2.6)        | 0.202   |  |
| T-inversion                                                               | 37 (1.1)           | 12 (0.8)        | 25 (1.3)        | 0.139   | 23 (1.0)                          | 10 (0.8)        | 13 (1.1)        | 0.530   |  |
| Atrial fibrillation                                                       | 29 (0.8)           | 14 (0.9)        | 15 (0.8)        | 0.678   | 21 (0.9)                          | 11 (0.9)        | 10 (0.8)        | 0.826   |  |
| Chest pain                                                                | 2167 (64.7)        | 950 (63.8)      | 1217 (65.4)     | 0.327   | 1485 (64.9)                       | 744 (65.0)      | 741 (64.8)      | 0.895   |  |
| AV Block                                                                  | 881 (26.3)         | 389 (26.1)      | 492 (26.4)      | 0.831   | 588 (25.7)                        | 294 (25.7)      | 294 (25.7)      | ns      |  |


#### Cumulative Clinical Outcomes up to 5-year. (MI & De Novo PCI)



#### De Novo PCI

#### AMI


#### Cumulative Clinical Outcomes up to 5-year. (CVA & Recurrent Angina)



CVA

#### **Recurrent Angina**

#### **Cumulative Clinical Outcomes up to 5-year.** (Composite Major Adverse Cerebral Cardiac Events)



#### MACCE-1

MACCE-2

# Summary

- After PSM analysis, 2 propensity-matched groups (1,143 pairs, n = 2,286, C-statistic=0.720) were generated and, the baseline characteristics of the two groups were balanced.
- 2. In clinical outcomes up to 5-year, there were similar incidence of individual hard endpoints including mortality, myocardial infarction, revascularization and recurrent angina requiring repeat coronary angiography.
- 3. Hypertension was not an independent predictor of adverse clinical outcomes in pts with CAS up to 5 years.

# Conclusion

Despite the expected endothelial dysfunction, hypertension was not associated with a worsening factor for adverse clinical outcomes in pts with significant CAS documented by intracoronary Ach provocation test up to 5 years, suggesting that the mechanisms and risk factors of CAS may be different from those of atherosclerotic CAD.

# Thank you for your attention

