JCR2014 (2014.12.12 @ Novotel, Busan, South Korea)

Postprandial Hyperlipidemia and Atherosclerosis

Shizuya Yamashita, MD, PhD, FAHA, FJCC
Department of Community Medicine
Department of Cardiovascular Medicine
Osaka University Graduate School of Medicine

COI Disclosure Shizuya YAMASHITA, MD, PhD, FAHA, FJCC

- ① Consultation fees: Kowa, Sanwakagaku Kenkyusho, Skylight Biotec
- 2 Stock ownership/profit: none
- ③ Patent fees: none
- 4 Remuneration for lecture: MSD, Bayer, Kowa
- **(5) Manuscript fees: none**
- 6 Trust research/joint research funds: Kowa, Sanwakagaku Kenkyusho, Otsuka, Shionogi, Boehringer Ingelheim, Japan Boehringer Ingelheim, MSD, Bayer, Astellas, Kissei, Fujirebio
- Scholarship fund: none
- **8** Affiliation with endowed department: none
- Other remuneration such as gifts: none

Topics

- Residual Coronary Risks
- Clinical Significance of Hypertriglyceridemia and Increased Remnants
- Methods for Evaluation of Remnants
- Apo B-48 Levels in Relation to Diseases
- Postprandial Hyperlipidemia and Atherosclerosis
- Treatment of Postprandial Hyperlipidemia

Residual Coronary Risks

Chapman MJ et al. Pharmacol Therapeutics 2010;126:314-345.

Statin can reduce the CV risk by 20-35%, but there are still residual event risks after cholesterol-lowering therapy.

Furthermore coronary plagues regress very

Furthermore, coronary plaques regress very limitedly on IVUS and we cannot usually see the widening of vessel lumen.

↓

The reduction of LDL-C alone may not be adequate?

Beyond LDL-cholesterol

Beyond LDL-cholesterol (Residual risk)

- Hypertension
- Diabetes mellitus
- Metabolic syndrome
- Low HDL-C
- Hypertriglyceridemia and postprandial hyperlipidemia
- Inflammation
- Smoking

Triglycerides and Coronary Heart Disease (11,068 Japanese Cases Followed for 15.5 Years)

(Matched for Age, BMI, TC, Smoking, BP, Alcohol, Blood sugar, Time after Meal, and Menopause)

Iso H. et al. : Am J Epidemiol. 2001:153:490-499

Plasma TG Level Is A Risk Factor For Cardiovascular Disease Independent of HDL-C Level: A Meta-analysis of 17 Population-based Prospective Studies

Exogenous and Endogenous Pathways of Lipoproteins

Atheogenicity of Lipoprotein Abnormalities Associated with Hypertriglyceridemia

What Are Remnants?

VLDL IDL (VLDL Remnant)

Serum lipids and lipoproteins in patients with myocardial Infarction

		<u> </u>
	Myocardial Infarction	Control
Male		
Number	70	23
T-CH	208±44	197±31
TG	158±84* 🚺	116±63
HDL-C	36±8***	48±14
VLDL-C	24±18	16±15
VLDL-TG	83±73	59±52
VLDL-(C/TG)	0.31±0.07 <mark>*</mark>	0.27 ± 0.08
IDL-C	11±5* 🚺	8±4
IDL-TG	15±10*	10±6
LDL-C	136±41	124±27
Female		
Number	27	10
T-CH	237±47	209±45
TG	161±57*** 1	82±21
HDL-C	41±11**	57±19
VLDL-C	24±23*	8±5
VLDL-TG	77±84	30±15
VLDL-(C/TG)	0.31±0.07	0.26 ± 0.10
IDL-C	17±9*	9±5
IDL-TG	20±8***	10±5
LDL-C	156±36	135±27

Determination of Remnants

■Electrophoresis

Agarose electrophoresis (broad β pattern)
PAG electrophoresis (midband, broad β pattern)

- Ultracentrifugation IDL-cholesterol
- Immunoaffinity chromatography RLP-cholesterol, RLP-TG
- Direct method (RemL-C)
- Apo B-48 (ELISA, CLEIA)

PAG Disc Electrophoresis

TC 231 mg/dl TG 367 mg/dl HDL-C 35 mg/dl

TC 192 mg/dl TG 85 mg/dl HDL-C 56 mg/dl

Methods for Measuring RLP-C(JIMRO)

FDA Approved:

- -Risk for CHD(2000)
- Diagnosis of Familial Type III Hyperlipidemia (1999)

Incubation with Anti Apo A- | , B-100 Antibodies Attached with Sepharose Beads for 3 Hours

Low-speed centrifugation

Adsorbed lipoproteins Precipitated

Fig. 1 Schematic procedure of separation and determination of remnant-like particles.

Remnants Are the Critical Risk Factor of Cardiovascular Events

Subjects : patients with cardiovascular events 147 cases male 97 cases, age 65 \pm 9.7 years Study duration : 26.8 \pm 13.9 months

Why Are Remnants Important?

■ Chylomicron remnants and VLDL remnants (IDL) are taken up by macrophages without oxidation, forming foam cells

■It is important to assess the increase of remnants and decrease them, which leads to the attenuation of development of atherosclerotic cardiovascular diseases

Chylomicron Remnants Contribute to Form Atherosclerotic Lesions Via Several Mechanisms

Atherosclerotic lesion formation

Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA¹

Naohiko Sakai,^{2,3,*} Yoshiaki Uchida,^{2,†} Koji Ohashi,* Toshiyuki Hibuse,* Yasuhiko Saika,* Yoshiaki Tomari,* Shinji Kihara,* Hisatoyo Hiraoka,* Tadashi Nakamura,* Satoru Ito,^{4,†} Shizuya Yamashita,* and Yuji Matsuzawa*

Department of Internal Medicine and Molecular Science,* Osaka University Graduate School of Medicine, B5, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; and Diagnostic Research Laboratories,† Fujirebio, Inc., 51 Komiya-cho, Hachioji, Tokyo 192-0031, Japan

Sakai N. et al: J Lipid Res 44: 1256, 2003

Distribution of Fasting Serum Apo B48 Levels in CAD and Non-CAD Subjects

Masuda D. et al: Eur J Clin Invest 2013

Fasting ApoB-48 Level Is Correlated with Prevalence of Coronary Heart Disease

	Univariate p value	Multivariate p value
age	0.1581	-
sex	0.3698	
Log-BMI	0.4645	-
Smoking	0.0492	-
TC	0.7440	-
LDL-C	0.8508	-
HDL-C	0.0085	0.3721
TG	0.0017	0.1098
Systolic BP	0.9747	-
Diastolic BP	0.6757	-
FPG	0.0081	0.6110
HbA1c	0.0008	0.3036
Log-apoB-48	<0.0001	<0.0001
Log-APN	0.0239	0.6039

Univariate and Multivariate Analyses of correlations between CHD and various parameters
Univariate;Pearson's correlation analysis,
Multivariate;Stepwise multiple regression analysis.

Masuda D, et al, Eur J Clin Invest

Postprandial Hyperlipidemia

- Increased TG-rich chylomicron remnants after meals
- Hypertriglyceridemia is prolonged after meals
- Highly atherogenic state

Zilversmit DB: Circulation 60:473-85, 1979

Postprandial Hyperlipidemia in Patients with Type IIb Hyperlipidemia

Postprandial Hyperlipidemia in Patients with Coronary Heart Disease

^{*}P<0.05 (CHD(+) vs control)
*P<0.05 (CHD(+) vs control),** P<0.01(CHD(+) vs control),*** P<0.01 (CHD(+) vs control)
fatty meal contained 729 kcal per square meter of body surface and
consisted of 5.3 g protein, 24.75 g carbohydrate, 240 mg cholesterol, and
65.2 g fat (from heavy whipping cream) with a polyunsaturated to saturated
fat ratio of 0.06

Patsh JR et al: *ATVB* 12:1336-1345, 1992

Postprandial Hyperlipidemia Is a Risk for Coronary Artery Disease Mortality

■Subjects Enrolled in MRFIT Study (n=2,809)

Postprandial Hyperlipidemia (Non-fasting Hypertriglyceridemia) Is a Critical Risk Factor of Cardiovascular Events in a Japanese

■Subjects: Normocholesterolemic Japanese (n=1,068)

Odds Ratio for Ischemic Stroke in Relation to Non-fasting TG and Total Cholesterol Levels

Factors and Diseases Affecting Postprandial Hypertriglyceridemia

	Extent of change in postprandial lipaemia
Dietary factors	
Amount of fat (meal)	+ + +
Type of fat (meal)	+/ — (depending on type of fat)
Type of fat (habitual diet)	+/ – (depending on type of fat)
Carbohydrates	++
Protein (meal)	No / — (depending on type of protein)
Alcohol	++
Fibre	No / — (depending on type of fibre)
Lifestyle factors	
Physical exercise	
Tobacco use	-
Physiological factors	
<u>Gende</u> r	+ (males)
Age	+
Menopausal status	+ (postmenauposal status)
Physiopathology	
Fasting triacylglycerolaemia	+++
Central obesity	++
Insulin resistance/type	++
2 diabetes	

Drug Treatment of Postprandial Hyperlipidemia

- Statins
- Fibrates
- Inhibitors of intestinal cholesterol transporter (ezetimibe)
- \blacksquare EPA, ω-3 fatty acids (EPA/DHA)
- Anti-diabetic drugs
- Others

Effect of Pitavastatin on Chylomicron Secretion into Lymph after OFL of Rats

Administration of Fenofibrate Reduces Fasting and Postprandial Plasma Triglyceride Concentrations in Wild-type and CD36-null Mice

Target of Ezetimibe

Subjects

Patients with Type IIb Hyperlipidemia (n=10, 8 Males and 2 Females)

Age: 51 \pm 14 years (34-67)

BMI: $27.1 \pm 4.4 \text{ kg/m}^2$

- 1. Total chlesterol>220 mg/dl and TG>150 mg/dl at fasting
- 2. Patients were administered ezetimibe (10mg/day) with informed consent
- 3. This study was approved by Ethical Committee of Osaka University Hospital

Effects of Ezetimibe on Postprandial Hyperlipidemia

Masuda D, Yamashita S et al.: Eur J Clin Invest 2009; 39: 689-98

Ezetimibe Reduces Postprandial Cholesterol and TG Levels in WT and CD36KO Mice

Ezetimibe Reduces Intestinal Absorption of ³H-labeled Trioleate in Both CD36KO and WT Mice

p<0.05

IMPROVE-IT Primary Endpoint — ITT

Cardiovascular death, MI, documented unstable angina requiring rehospitalization, coronary revascularization (≥30 days), or stroke

IMPROVE-IT Primary and 3 Prespecified Secondary Endpoints — ITT

UA, documented unstable angina requiring rehospitalization; Cor Revasc, coronary revascularization (≥30 days after randomization); All D, all-cause death; CHD, coronary heart disease death; All Revasc, coronary and non-coronary revascularization (≥30 days)

Take home messages

- Postprandial hyperlipidemia is a strong risk factor for CHD due to increases in chylomicron remnants
- Postprandial hyperlipidemia is often observed in patients with diabetes, metabolic syndrome and CHD
- Postprandial hyperlipidemia can be treated with diet/exercise and anti-hyperlipidemic drugs such as statins, fibrates and intestinal cholesterol transporter inhibitor (ezetimibe)
- Inhibition of cholesterol absorption by ezetimibe on top of statin even at very low LDL-C levels prevented CV events in patients with ACS