Induction of Endothelial Cell from Fibroblast by 5 Defined Factors

Hyo-Soo Kim, MD, PhD, FAHA

Director, National Research Laboratory for Cardiovascular Stem Cell, Seoul National University Hospital (SNUH),

Seoul, Republic of Korea

SNUH Cardiovascular Center

Presenter Disclosure

Nothing to disclose

Background

- New vessel formation using endothelial cells holds great therapeutic promise.
- ESC- or iPSC-derived ECs
 - Ethical hurdles
 - No standardized protocol
 - Necessity for complex manipulation of EB
 - Low differentiation efficiency
 - Risk of contamination by feeder cells

SNUH Cardiovascular Center

Waddington's Epigenetic Landscape

Conventional concept

Ladewig et al., Nat. Rev. Mol. Cell Biol. 2013

Aim:

 To develop a novel methodology providing endothelial cells from fibroblasts via direct conversion.

11 Candidate Factors

Gene symbol	Accession Number
Gata2	NM_008090
Foxc2	NM_013519
Elf1	NM_007920
Erg	NM_133659
Fli1	NM_008026
Tal1	NM_011527
Foxo1	NM_019739
Lmo2	BC057880
Ets1	BC010588
Er71(Etv2)	NM_007959
Klf2	NM_008452

Series of 'Single Factor' Transduction Experiments

5 Key Factors for Endothelial Reprogramming

Tie2-GFP

EC markers during the Programming

SNUH

Lentiviral Silencing

EC Markers after Endothelial Reprogramming

SNUH Cardiovascular Center

Induced Endothelial Cells: after Tie2 sorting

iEC Characterization: **RT-PCR**

Relative mRNA expression

iEC Characterization: IF, EC Fx.

Cardiovascular Center

SNUF

After sorting by Tie2

iEC Characterization: Matrigel Tube Formation

SNUH Cardiovascular Center

JK Han,,, HS Kim. Circulation 2014

iEC Characterization: NO Production

After overnight incubation in 2 ng/ml VEGF, culture supernatants were harvested, and NO was assayed using a NO Detection Kit.

SNUH J Cardiovascular Center

Endothelial Epigenetics / Genetics

Bisulfite sequencing

Affymetrix GeneChip Mouse Gene 1.0 ST Array

EC specific genes

11 factors

Endothelium development (GO003158)

Regulation of EC migration (GO0010594)

SFB-1 SFB-2 Mock-SFB-3 Mock-SFB-1 Mock-SFB-2 iEC-1 Primary EC-1 Primary EC-2 MS1-1 MS1-2 iEC-2 iEC-2

SNUH Cardiovascular Center

Proliferation & Apoptosis of iECs

Growth Curve

Serum Starvation

Annexin V SNUH Cardiovascular Center

Universal Effect of iEC-5 Factors: TTF

Tail-tip FB (TTF)

Effect of iEC-5 Factors on Monocytes

SNUH

Unique Effect of iEC-5 Factors: Compared with Rafii's 3 Factors

Not Through Pluripotency Induction: Oct4-GFP SFBs

Not Through Pluripotency Induction: Nanog-GFP SFBs

Not Through Pluripotency Induction: Oct4/Nanog stay silent during trans-differentiation

In Vivo Functionality of iECs

Mouse Hindlimb Ischemia Model: D14

Gross Pictures

LDPI

Cardiovascular Center

SNUH 8

Mouse Hindlimb Ischemia Model: Capillary Density

In Vivo Engraftment Ratio = **10%**

In Vivo Participation as EC in Capillary: 0.3%

Mock-SFB

In Vivo Participation as EC : 0.3%

iEC vs. ESC/iPSC-derived ECs

Therapeutic Strategy

Efficient Direct Reprogramming of Mature Cell, 2012 TGF 6 Suppression

Human amniotic cells

 $\rightarrow ECs$

ER71/ERG1/FLI1

3 ETS factors:

Only amniotic cells - Not readily available Immunogenicity / allograft rejection Not terminally differentiated FBs

Conversion of human fibroblasts to angioblast-like progenitor cells

Nat. Med, 2012

PNAS, 2012

Human FBs \rightarrow ECs

Y' iPS 4 factors:

OCT4/SOX2/KLF4/MYC

Via partial iPSC or progenitor cells status

– Concerns over tumorigenic

potential

Summary

- The first study demonstrating that adult fibroblasts can be directly converted to ECs by defined factors.
- These **iEC 5 factors** are Foxo1, Er71, Klf2, Tal1 and Lmo2.
- iECs exhibit endothelial features and functions in vitro and in vivo.

Conclusions

- Our study provides further evidence that cell fate determination is not eternal, but plastic by the formation of new transcriptional network.
- Our findings identify the molecular background of endothelial differentiation and trans-differentiation.
- This study makes significant progress towards future clinical application.

Direct Conversion of Adult Skin Fibroblasts to Endothelial Cells by Defined Factors

Jung-Kyu Han, MD*; Sung-Hwan Chang, BS*; Hyun-Ju Cho, PhD*; Saet-Byeol Choi, BS*; Hyo-Suk Ahn, MS; Jaewon Lee, BS; Heewon Jeong, BS; Seock-Won Youn, PhD; Ho-Jae Lee, BS; Yoo-Wook Kwon, PhD; Hyun-Jai Cho, MD; Byung-Hee Oh, MD; Peter Oettgen, MD; Young-Bae Park, MD; Hyo-Soo Kim, MD

- Background—Cell-based therapies to augment endothelial cells (ECs) hold great therapeutic promise. Here, we report a novel approach to generate functional ECs directly from adult fibroblasts.
- *Methods and Results*—Eleven candidate genes that are key regulators of endothelial development were selected. Green fluorescent protein (GFP)–negative skin fibroblasts were prepared from Tie2-GFP mice and infected with lentiviruses allowing simultaneous overexpression of all 11 factors. Tie2-GFP⁺ cells (0.9%), representing Tie2 gene activation, were detected by flow cytometry. Serial stepwise screening revealed 5 key factors (Foxo1, Er71, Klf2, Tal1, and Lmo2) that were required for efficient reprogramming of skin fibroblasts into Tie2-GFP⁺ cells (4%). This reprogramming strategy did not involve pluripotency induction because neither Oct4 nor Nanog was expressed after 5 key factor transduction. Tie2-GFP⁺ cells were isolated using fluorescence-activated cell sorting and designated as induced ECs (iECs). iECs exhibited endothelium-like cobblestone morphology and expressed EC molecular markers. iECs possessed endothelial functions such as *Bandeiraea simplicifolia*-1 lectin binding, acetylated low-density lipoprotein uptake, capillary formation on Matrigel, and nitric oxide production. The epigenetic profile of iECs was similar to that of authentic ECs because the promoters of VE-cadherin and Tie2 genes were demethylated. mRNA profiling showed clustering of iECs with authentic ECs and highly enriched endothelial genes in iECs. In a murine model of hind-limb ischemia, iEC implantation increased capillary density and enhanced limb perfusion, demonstrating the in vivo viability and functionality of iECs.
- Conclusions—We demonstrated the first direct conversion of adult fibroblasts to functional ECs. These results suggest a novel therapeutic modality for cell therapy in ischemic vascular disease. (Circulation. 2014;130:1168-1178.)

Key Words: cell transdifferentiation ■ endothelial cells ■ fibroblasts

SNUH Cardiovascular Center

iEC Project

Jung-Kyu Han, MD Sung-Hwan Chang, Hyun-Ju Cho, PhD Saet-Byeol Choi, Hyo-Suk Ahn, MS Jung-Soo Lee

<u>Fund</u>

- Innovative Research Institute for Cell Therapy (IRICT), Korea
- National Research Foundation (NRF), Korea