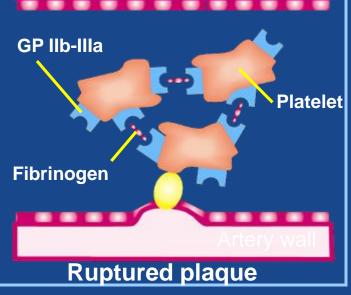
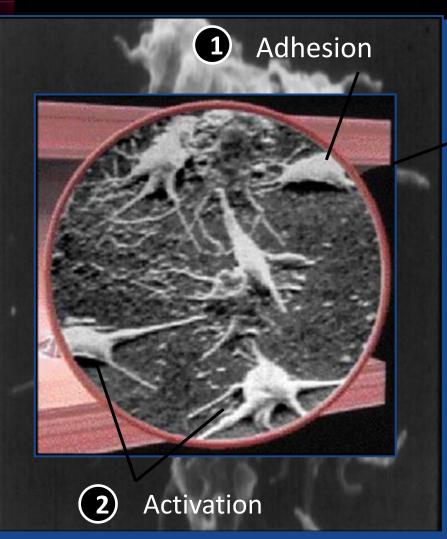

Antiplatelet Therapy in ACS Patients: New P2Y12 Inhibitor is Preferred

Michael S. Lee, MD Associate Professor UCLA Medical Center Los Angeles, CA

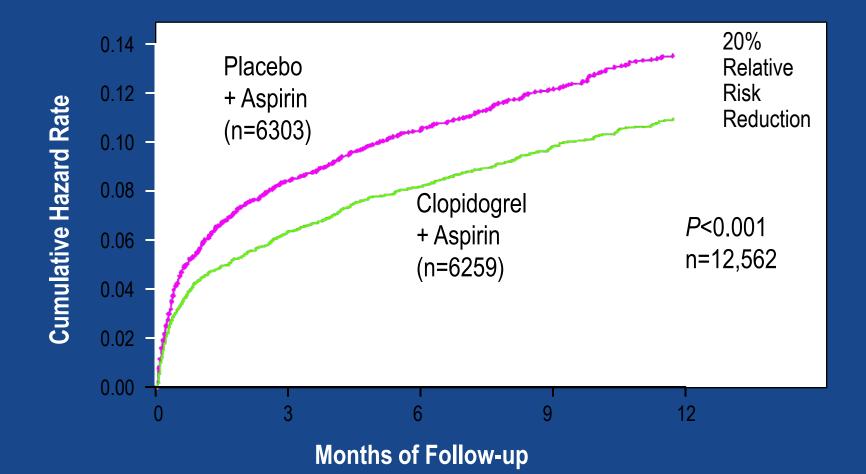


The Role of the Platelet in Non-ST Elevation Acute Coronary Syndrome

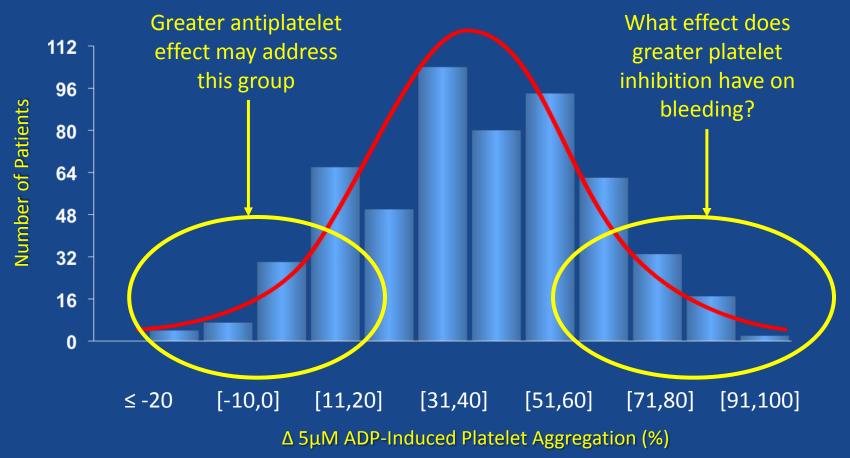

Results from cross-linking of platelets by fibrinogen at platelet receptors GP IIb-IIIa at site of plaque rupture

Van de Werf F. *Thromb Haemost.* 1997;78(1):210-213; Moser M, et al. *J Cardiovasc Pharmacol.* 2003;41(4): 586-592; Davies MJ. *Heart.* 2000;83(3):361-366.

The Role of Platelets in Atherothrombosis


3 Aggregation

Slide modified from Cannon CP, et al. Available at http://www.theheart.org/viewArticle.do?primaryKey=119759. Accessed April 20, 2005.

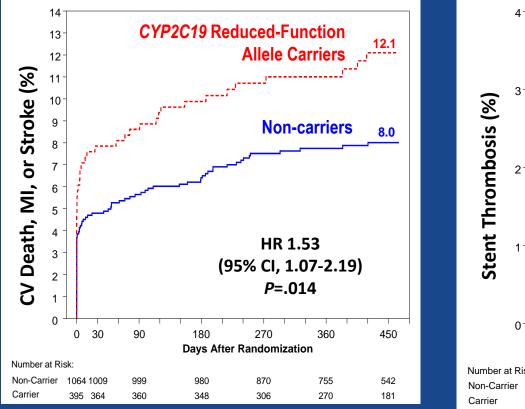

CURE Study *Primary End Point: MI/Stroke/CV Death*

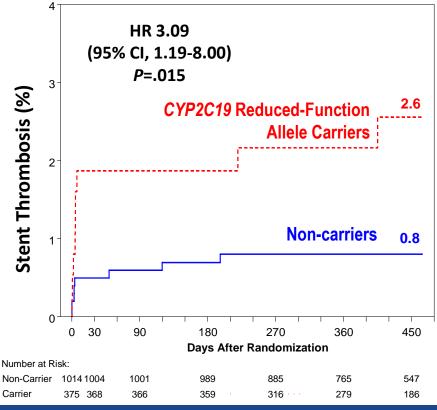
IPA Responses to Clopidogrel

Adapted from: Serebruany V et al. J Am Coll Cardiol. 2005.

Biotransformation of Clopidogrel

- Clopidogrel is a prodrug that requires conversion to its active metabolite.¹
 - 2-step process mediated by CYP450s, with CYP2C19 involved in both steps
- A substantial portion of absorbed clopidogrel is shunted into a dead-end pathway by esterases.²

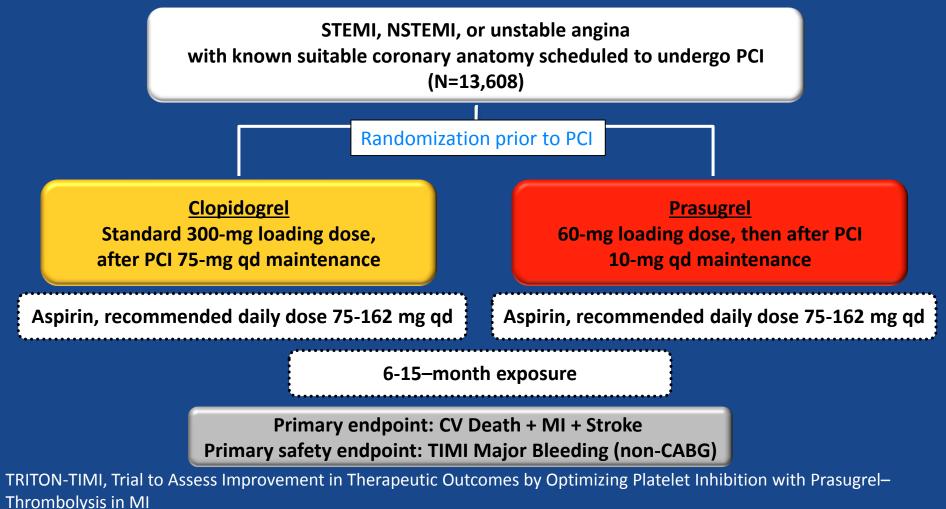



CYP2C19 Genotype, Clinical Outcomes

1477 Patients w/ ACS and planned PCI Rx'd w/ clopidogrel

CV events

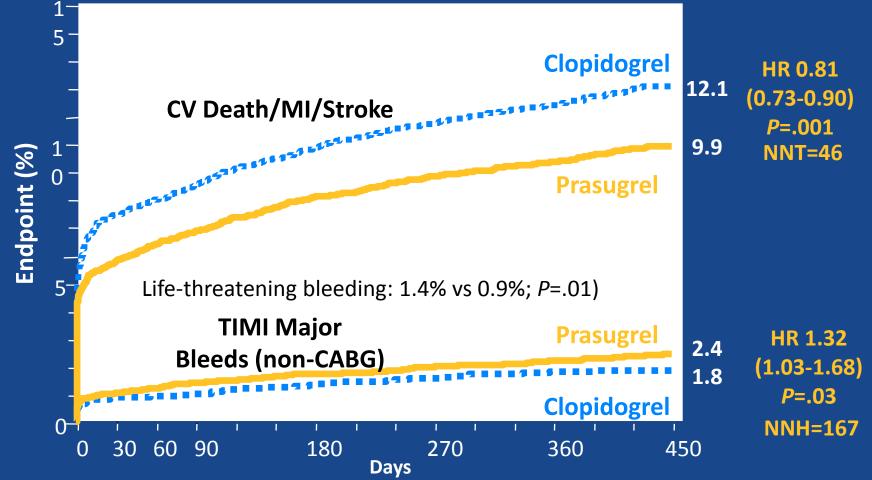
Stent Thrombosis


Carriers ~30% of the population CV, cardiovascular; HR, hazard ratio; CI, confidence interval

Mega JL. N Engl J Med 2009;360:354-362. Copyright © 2009 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

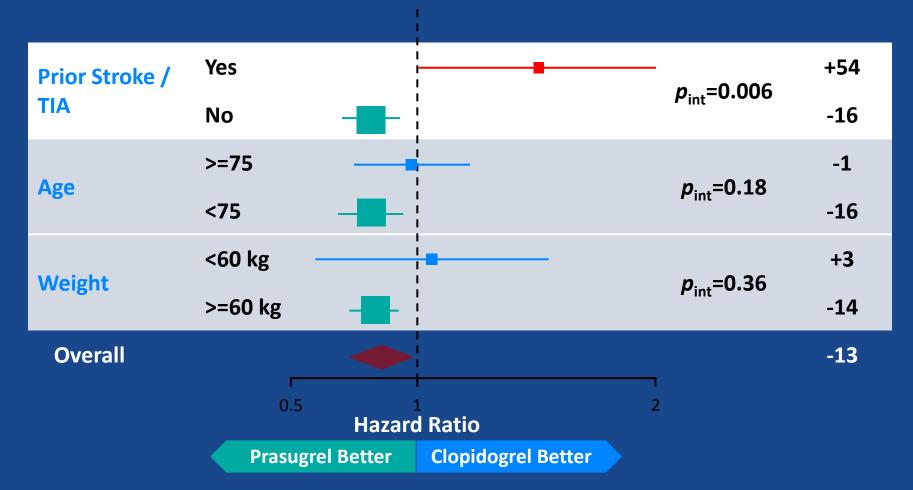
TRITON-TIMI 38: Prasugrel vs Clopidogrel

Study Design



Wiviott SD et al. N Engl J Med. 2007;357:2001-2015.

TRITON-TIMI 38: Prasugrel vs Clopidogrel



Balance of Efficacy and Safety

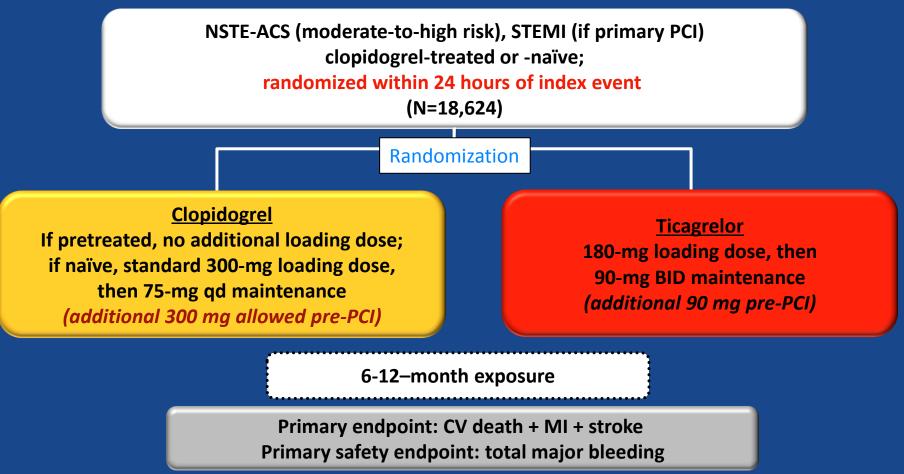
Copyright © 2007 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

Balancing Efficacy and Bleeding TRITON TIMI-38: Net Clinical Benefit

TRITON TIMI-38 = Trial to Assess Improvement in Therapeutic Outcomes by Optimizing Platelet Inhibition with Prasugrel–Thrombolysis in Myocardial Infarction 38.

Wiviott SD, et al. NEJM. 2007;357:2001-2015.

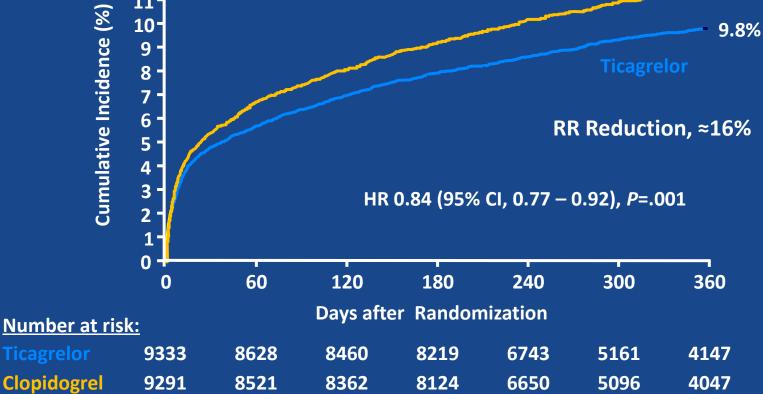
Prasugrel Summary



- Third-generation oral thienopyridine¹
- Oral prodrug, hydrolyzed more efficiently vs clopidogrel¹
 - Faster onset of action
 - More potent antiplatelet effect
 - Reduced variability
 - Less impact of drug-drug interactions, genetic polymorphisms
- TRITON-TIMI 38: Significantly reduced rates of ischemic events, but increased risk of major (and fatal) bleeding, in patients with ACS scheduled for PCI¹
- Contraindicated in patients with history of stroke or TIA²
- Consider dose reduction in patients with age >75 or weight <60 kg²
- 1. Capodanno D et al. *J Thromb Haemost*. 2013;11(suppl 1):316-329.
- 2. Eli Lilly and Co. Effient package insert. 2012.

PLATO: Ticagrelor vs Clopidogrel in ACS

Study Design



PLATO, Platelet Inhibition and Patient Outcomes

Wallentin L et al. N Engl J Med. 2009;361(11):1045-1057.

PLATO: Ticagrelor vs Clopidogrel in ACS

Time to Primary Efficacy Endpoint*

*Composite of CV death, MI, or stroke

Wallentin L et al. *N Engl J Med*. 2009;361(11):1045-1057.

Copyright © 2009 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

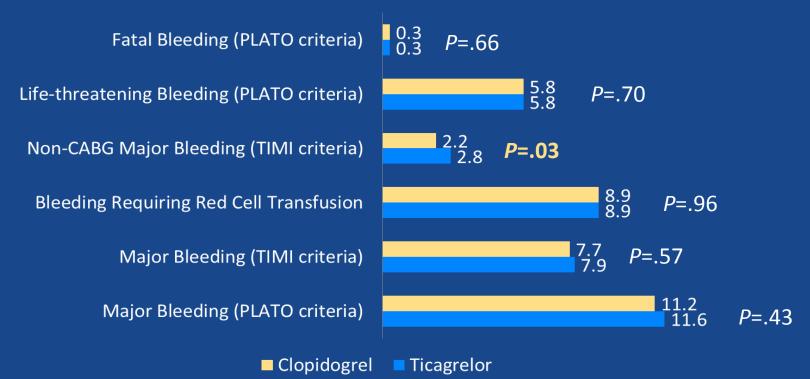
PLATO: Clopidogrel vs Ticagrelor

Major Efficacy Endpoints at 12 Months, Total Cohort

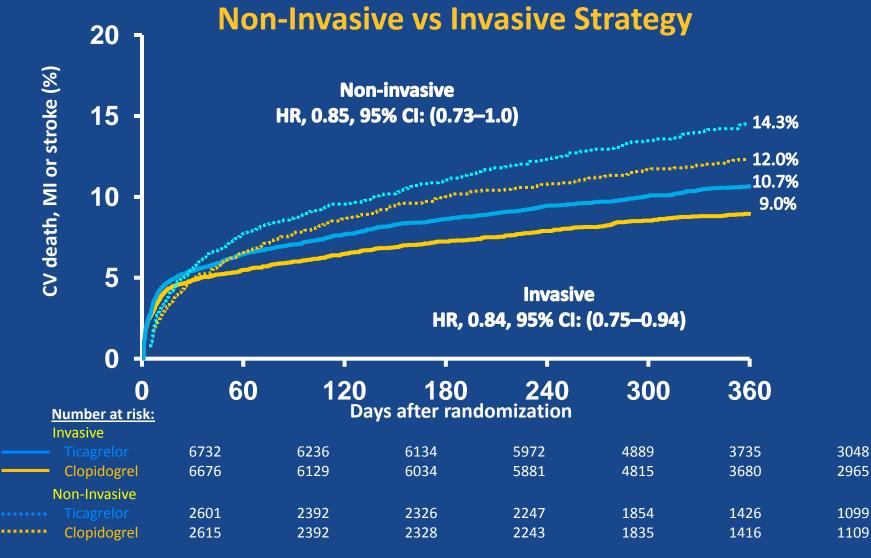
ENDPOINT*	Ticagrelor (n=9333)	Clopidogrel (n=9291)	Ticagrelor HR (95% Cl)	<i>P</i> value [†]
Primary endpoint, %				
Death from vascular causes/MI/ stroke	9.8	11.7	0.84 (0.77–0.92)	<.001
Secondary endpoints, %				
Death from any cause/MI/stroke	10.2	12.3	0.84 (0.77–0.92)	<.001
Death vascular cause/MI/ stroke/SRI/TIA/arterial thrombotic events	14.6	16.7	0.88 (0.81–0.95)	<.001
MI	5.8	6.9	0.84 (0.75–0.95)	.005
Death vascular causes	4.0	5.1	0.79 (0.69–0.91)	.001
Stroke	1.5	1.3	1.17 (0.91–1.52)	.22
All-cause mortality	4.5	5.9	0.78 (0.69–0.89)	<.001

*Percentages are K-M estimates of the rate of the endpoint at 12 mo; patients could have had >1 type of endpoint *By Cox regression analysis

SRI, severe recurrent ischemia

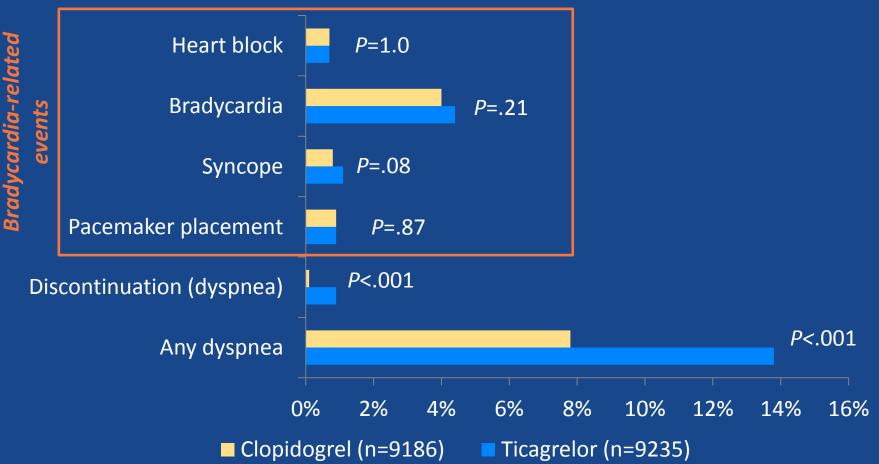

Wallentin L et al. N Engl J Med. 2009;361(11):1045-1057.

PLATO: Ticagrelor vs Clopidogrel in ACS


Major Bleeding

Estimated Rate (%/y)

PLATO: Ticagrelor vs Clopidogrel in ACS


James S et al. *BMJ.* 2011;342:d3527.

Reproduced from *BMJ*, James S et al, 342, d3527, ©2011 with permission from BMJ Publishing Group Ltd.

PLATO: Clopidogrel vs Ticagrelor

Other Safety Endpoints*

*Percentages are K-M estimates of the rate of the endpoint at 12 mo; patients could have had >1 type of endpoint

Wallentin L et al. N Engl J Med. 2009;361(11):1045-1057.

Ticagrelor Summary

- Directly, reversibly inhibits P2Y₁₂ receptor¹
 - More potent, consistent antiplatelet effect
 - Requires twice-daily dosing
- In PLATO, ticagrelor resulted in improved ischemic benefit, decreased CV mortality in patients with ACS; significant increase in non-CABG bleeding, but not CABG-related bleeding.²
 - High-dose ASA (≥300 mg) associated with possible harm in combination with ticagrelor³; recommended ASA dose ≤100mg QD
 - Demonstrated less efficacy in US population in PLATO; may be related to higher ASA dose in US or play of chance³

1. Capodanno D et al. *J Thromb Haemost* . 2013;11(suppl 1):316-329. 2. Wallentin L et al. *N Engl J Med*. 2009;361(11):1045-1057. 3. Mahaffey KW et al. *Circulation*. 2011;124:544-554.

CURRENT GUIDELINES FOR DUAL ANTIPLATELET THERAPY IN ACS

Guidelines for Antiplatelet Therapy in NSTEMI

2014 AHA/ACC Guideline for the Management of NSTE-ACS

Recommended LD of P2Y₁₂ inhibitors at the time of PCI:

- Clopidogrel 600 mg (LOE: B), or
- Prasugrel* 60 mg (LOE: B) who are not at high risk of bleeding (LOE: B), or
- Ticagrelor[†] 180 mg (LOE: B)

Duration and maintenance dose of P2Y₁₂ receptor inhibitors after stent placement:

- In NSTE-ACS patients:
 - Either clopidogrel 75 mg/d, prasugrel 10 mg/d, or ticagrelor 90 mg BID, \geq 12 mo (LOE: B)
- If risk of morbidity due to bleeding outweighs anticipated benefits afforded by P2Y₁₂ receptor inhibitor therapy, consider earlier discontinuation (LOE: C)

*Loading dose of prasugrel indicated if not pretreated with another P2Y₁₂ receptor inhibitor; should not be used in patients with a h/o stroke or TIA †The recommended dose of aspirin to be used with ticagrelor is 81 mg/d LOE, level of evidence Adjunctive Antiplatelet Therapy to Support Reperfusion with Primary PCI for STEMI

2013 ACCF/AHA Guidelines

Aspirin:

- 162 to 325 mg given before primary PCI (LOE: B), and
- 81 mg to 325 mg maintenance dose continued indefinitely after PCI (LOE: A)
- Preferred maintenance dose is 81 mg/d (Class IIa, LOE: B)*

*The recommended dose of aspirin to be used with ticagrelor is 81 mg/d

O'Gara PT et al. Circulation. 2013;127:e362-425.

Adjunctive Antiplatelet for Primary PCI for STEMI

2013 ACCF/AHA Guidelines

P2Y₁₂ receptor inhibitors:

- Loading dose as early as possible or at time of PCI
 - Clopidogrel, 600 mg
 - Prasugrel, 60 mg
 - Ticagrelor, 180 mg
- Maintenance therapy for 1 y (minimum 1 mo with BMS) in patients who receive a stent (DES or BMS)*
 - Clopidogrel, 75 mg/d (LOE: B)
 - Prasugrel, 10 mg/d (LOE: B)
 - Ticagrelor, 90 mg BID (LOE: B)
- Prasugrel contraindicated in patients with history of stroke or TIA

BMS, bare-metal stent; DES, drug-eluting stent

*Balloon angioplasty without stent placement may be used in selected patients. It might be reasonable to provide P2Y₁₂ inhibitor therapy to patients with STEMI undergoing balloon angioplasty alone per recommendations listed for BMS.

