JCR2014 (2014.12.13@Novotel, Busan, South Korea)

le stero ransport

Shizuya Yamashita, MD, PhD, FAHA, FJCC Department of Community Medicine Department of Cardiovascular Medicine Osaka University Graduate School of Medicine

and

5

- ★ HDL-mediated reverse cholestrol transport and importace of HDL-C management
- **★** Novel functions of HDL and dysfunctional HDL
- ★ Anti-atherogenic effects of probucol and their mechanisms
- ★ Anti-atherogenic effects of probucol from human clinica studies

REVERSE CHOLESTEROL TRANSPORT

Familial HDL Deficiency

Tangier disease (Deficiency of ABCA1) Familial LCAT deficiency / Fish eye disease Familial apo A-I/C-III deficiency Familial HDL deficiency with planar xanthoma Familial apo A-I deficiency Familial hypoalphalipoproteinemia

Often associated with corneal opacity & premature coronary artery disease

Reduction of Serum HDLcholesterol Alone Accelerates Atherosclerosis

Two Cases of Marked Hyperalphalipoproteinemia with Premature Corneal Opacity

58 y.o. Male		61 y.o. l	61 y.o. Male		
ТС	261 mg/dl	ТС	238 mg/dl		
TG	68	TG	64		
HDL-C	154	HDL-C	138		
CHD	(-)	CHD	(+)		

Matsuzawa Y, Yamashita S, et al. Atherosclerosis 1984

Liver

Lipoprotein Abnormalities of CETP Deficiency

Nondenaturing PAGE (4-30%)

Normal → LDL

Normal HDL

iciency

LDL in CETP deficiency

Polydisperse LDL poor in CE Low affinity to LDL receptors

Yamashita S et al, Atherosclerosis 1988 Sakai N et al, Arterioscler Thromb 1991 & Eur J Clin Invest 1995

HDL in CETP deficiency

Marked increase in HDL2 Large HDL particles enriched with CE & apo E Reduced capacity of cholesterol efflux

Yamashita S et al, J Clin Invest 1990 Ishigami M et al, J Biochem 1994

Hyperalphalipoproteinemia is a disorder of reverse cholesterol transport

Epidemiological Study of Hyper-HDLcholesterolemia in Omagari Area of Japan

Large Population-based study in Omagari, Japan Subjects: Male=39567, Female=64938

20-fold higher 10-fold higher

CETP Gene Mutation				
Omagari	29.7%			
Osaka	1.0%			
Tokyo	1.5%			
Shizuoka	1.3%			

Relationship between HDL-C and Ischemic ECG Changes –Omagari Study–

Prevalence of a Marked HALP (HDL-C ≥100 mg/dL) and Intron 14 Splice Donor Site Mutation in Subgroups Divided by Every 10 Years of Age (Omagari Study)

Marked HALP (HDL-C ≥100 mg/dL)

Intron 14 Splice Donor Site Mutation

Hirano K et al: Arterioscler Thromb Vasc Biol 17:1053-1059, 1997

CETP activity and Cardiovascular Events

Subjects with low CETP activity had a higher risk for CV events than those with high CETP activity

Frammingham Study

Vasan, R. S. et al. Circulation 2009;120:2414-2420

Lipid-loweing Effects of CETP Inhibitors/Modulators % Change from Baseline

CETP Inhibitor	Torcetrapib	Dalcetrapib	Anacetrapib	Evacetrapib
dose (mg/day)	60	600	100	500
HDL-C (%)	+61	+31	+38	+29
LDL-C (%)	-24	-2	-40	-36
TG (%)	-9	-3	-7	-11

Adapted from Cannon C et al. *JAMA*. 2011;306:2153-2155. Nicholls SJ et al. *JAMA*. 2011;306:2099-2109.

ILLUMINATE

Effects of Torcetrapib in Patients at High Risk for Coronary Events

Barter PJ et al for the ILLUMINATE Investigators: N Engl J Med 2007; 357 :2109-2122

Failure of CETP Inhibitor Torcetrapib

Torcetrapib reduces LDL-C by 20% and increases HDL by more than 60%, however:

ILLUMINATE Study: Combination of atorvastatin and torcetrapib increased total mortality, including cardiovascular mortality.

ILLUSTRATE Study: Torcetrapib had no effect on plaque volume

RADIANCE 1 & 2: Torcetrapib had no effect on IMT in FH heterozygotes and mixed hyperlipidemia

Torcetrapib elevated blood pressure due to increase of aldosterone

dal-OUTCOMES trial

heartwire	e]						dalcetrapib
LIPID/METABOLIC							
Roche sto	ops dalcetrapib	trial f	or lack o	of benefit			
MAY 7, 2012 Reed	Miller		Recommend {	1 Tweet 11	2	Share 1	
23 Comments	Read later 🛛 🗧 🚺	Print	Font size	Cite			eive daily
Basel, Switzerl protein (CETP) in drug was not sig	and – Roche has stopped nhibitor dalcetrapib afte gnificantly reducing card	the phase r interim a iovascular	3 dal-OUTCO analysis of the adverse events	MES trial of the ch study showed the l s [1].	olesteryl este HDL-choleste	er transfer erol-boosting	Roche
As reported by the carotid arter arterial inflamm study currently syndrome (ACS) medical therapy	heartwire, the earlier da ry and that there was an lation in patients treated planned for about 16 00 9. Patients in the study we or placebo and standard	I-PLAQUE inverse rel with the d 0 stable co ere random d medical t	study showed ationship betw rug. Dal-OUTC pronary heart d nized to either therapy.	that dalcetrapib reven HDL-cholester COMES was a major lisease patients wit 600 mg daily of da	educed inflan rol levels and r morbidity a th recent acu alcetrapib and	nmation in I markers of nd mortality te coronary d standard	
end noint e	events have occ	Roch	ne provides up	date on Phase III	study of dalo	cetrapib	L

years.

least 2 years, and 80% of eva Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that following the results of the second interim analysis of the dalcetrapib dal-OUTCOMES Phase III trial, the independent Data and Safety Monitoring Board (DSMB) has recommended stopping the trial due to a lack of clinically meaningful efficacy. The dal-OUTCOMES trial evaluated the efficacy and safety profile of dalcetrapib when added to existing standard of care in patients with stable coronary heart disease (CHD) following an acute coronary syndrome (ACS). No safety signals relating to the dal-OUTCOMES trial were reported from the DSMB.

Risk Reduction for CHD Events As a Function of Changes in TC, LDL-C, and HDL-C

*4S, CARE, LIPID, WOSCOPS **HELSINKI, VA-HIT,AFCAPS/TexCAPS

Failure of CETP Inhibitors

Torcetrapib:

Markedly increases serum HDL-C, and reduces LDL-C

Dalcetrapib:

Increases serum HDL-C, but does not reduce LDL-C

→Elevation of HDL-C by CETP inhibition may not affect CVD or rather increase CVD. HDL functions and the efficiency of reverse cholesterol transport are more important for prevention and regression of atherosclerosis

Forest Plot Showing Effect of CETP Inhibitors on Risk of All Cause Mortality Stratified by CETP Inhibitors

Study or subgroup	CETP inhibitor	Control	Odds ratio M-H,	Weight	Odds ratio M-H,
Anacetrapib			random (95% CI)	(%)	random (95% CI)
Define 2010	11/811	8/812		5.5	1.38 (0.55 to 3.45)
Subtotal	11/811	8/812		5.5	1.38 (0.55 to 3.45)
Test for heterogeneity: Not ap	oplicable				
Test for overall effect: z=0.69	9, P=0.49				
Dalcetrapib					
Dal-Vessel 2012	0/239	1/237		0.5	0.33 (0.01 to 8.12)
Dal-Plaque 2011	1/64	2/66		0.8	0.51 (0.04 to 5.74)
Dal-Outcomes 2012	226/7938	229/7933	÷	57.2	0.99 (0.82 to 1.19)
Subtotal	227/8241	232/8236	÷	58.4	0.98 (0.81 to 1.18)
Test for heterogeneity: τ^2 =0.0	00, χ ² =0.73, df=2,	P=0.69, ² =0%			
Test for overall effect: z=0.23	, P=0.82				
Torcetrapib					
Radiance 1 2007	0/450	1/454		0.5	0.34 (0.01 to 8.26)
Radiance 2 2007	1/377	1/375		0.6	0.99 (0.06 to 15.96)
Illuminate 2007	93/7533	59/7534		30.9	1.58 (1.14 to 2.20)
Illustrate 2007	8/591	6/597		4.1	1.35 (0.47 to 3.92)
Subtotal	102/8951	67/8960	•	36.1	1.53 (1.12 to 2.09)
Test for heterogeneity: τ^2 =0.0	00, χ ² =1.05, df=3,	P=0.79, ² =0%			
Test for overall effect: z=2.69	9, P=0.007				
Total (95% CI)	340/18 003	307/18008	+	100.0	1.16 (0.93 to 1.45)
Test for heterogeneity: $\tau^2=0.0$	1, χ ² =7.91, df=7, F	P =0.34, ² =12%			
Test for overall effect: z=1.31	, P=0.19			~ ~	
Test for subgroup difference:	χ ² =6.12, df=2, P=	$0.05, ^2 = 67.4\%$		00	
		F	avours CETP Inhibitor Favours cont	rol 040-l	
			keene det al. BMJ 2014;	349:DI	nj.g4379

Without Background Statin Treatment, Fibrates and Niacin, But Not CETP Inhibitors Were Found to Reduce Non-fatal Myocardial Infarction

Keene D et al. BMJ 2014;349:bmj.g4379

Why CETP Inhibitors Do Not Work in Humans

Liver

Anti-atherogenic Actions of HDL

HDL

Cellular Cholesterol Efflux & Reverse Cholesterol Transport

Anti-

infectious

activity

Anti-thrombotic

activity

Anti-inflammatory activity

Anti-diabetic

Anti-oxidative activity

Anti-apoptotic activity

Endothelial Repair Vasodilatory Activity

Yamashita S: J Atheroscler Thromb 17:436-451, 2010

Functions of HDL-Associated Proteins

ATVB 2009

When good cholesterol goes bad?

(Fogelman AM et al, Nat Med 2004; 10: 902-903)

HDL: is it always atheroprotective?

(Ansell BJ et al, Curr Atheroscler Res 2006; 8: 405-411)

Quality is more important than Quantity? Composition of HDL is important for playing its proper role?

Effects of HDL Obtained from Healthy Subjects, Patients with CAD or Acute Coronary Syndrome on NO Release from Human Aortic Endothelial Cells

Lüscher T et al: Circulation Research 114:171-182, 2014

HDL Infusion Improves Endothelial Function in Humans

Lüscher T et al: Circulation Research 114:171-182, 2014

Functional HDL and Dysfunctional HDL

Ansell et al, Curr Opin Lipidol 18: 157-163, 2007

Odds Ratios for Coronary Artery Disease According to Cholesterol Efflux Capacity

Variable	No. of Patients	Odds Ratio for Coronary Artery Disease (95% CI)*		
		Adjusted for Cardiovascular Risk Factors	Adjusted for Cardiovascular Risk Factors and HDL Cholesterol	Adjusted for Cardiovascular Risk Factors and Apolipoprotein A-I
Quartile 1	198	1.00	1.00	1.00
Quartile 2	198	0.75 (0.48–1.16)	0.79 (0.51–1.24)	0.77 (0.49–1.21)
Quartile 3	198	0.58 (0.37–0.89)	0.64 (0.41–1.00)	0.63 (0.40–0.99)
Quartile 4	199	0.40 (0.25–0.63)	0.48 (0.30–0.78)	0.46 (0.28–0.75)
P value for trend		<0.001	0.002	0.002

* Cardiovascular risk factors included in the logistic-regression model were age, sex, smoking status, presence or absence of diabetes, presence or absence of hypertension, and low-density lipoprotein cholesterol. HDL denotes highdensity lipoprotein.

Rader et al: N Engl J Med 2011

Odds Ratios for Coronary Artery Disease According to Cholesterol Efflux Capacity and Selected Risk Factors

Cholesterol efflux capacity is more important for reduction of coronary artery disease than serum HDL-C levels.

HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events

Models	No. of Participants with Event/ Total No. of Participants	Hazard Ratio (95% CI)	
HDL cholesterol	132/2416		
Unadjusted analysis		⊢	0.64 (0.40-1.03)
Analysis adjusted			
For traditional risk factors		⊢	0.80 (0.47-1.37)
For traditional risk factors and HDL particle concentration		 I	1.08 (0.59–1.99)
Cholesterol efflux capacity	132/2416		
Unadjusted analysis		⊢ →→	0.44 (0.27–0.73)
Analysis adjusted			
For traditional risk factors		⊢ →→	0.30 (0.18-0.50)
For traditional risk factors and HDL cholesterol		⊢ →	0.31 (0.18–0.52)
For traditional risk factors and HDL particle concentration		— •1	0.34 (0.20–0.56)
For traditional risk factors, HDL cholesterol, and HDL particle concentration		F	0.33 (0.19–0.55)
		0.1 1.0	10.0

Rohatgi A, et al: N Engl J Med, Nov 18, 2014 Epub

HDL Cholesterol Efflux Capacity and Incident Cardiovascular Events

Atherosclerotic Cardiovascular Disease

Total Cardiovascular Disease

Rohatgi A, et al: N Engl J Med, Nov 18, 2014 Epub

Unique Characteristics of Probucol

- Lowers HDL-C as well as LDL-C
- HDL is small and poor in CE
- Enhances HDL-mediated cholesterol efflux from mφ
- Accelerates HDL-mediated reverse cholesterol transport *in vivo* by enhancement of CETP and SR-BI
- Strong anti-oxidative effect
- Reduces xanthomas (Achilles tendon, xanthelasma, etc)

(CH₃)₃C

(CH₃)₃C

HO

C(CH₃)₃

OH

C (CH₃) 3

CH₃

CH₃

Effects of Probucol on HDL

- Probucol reduces HDL-C
- HDL of probucol-treated patients is small and poor in cholesteryl ester
- HDL of probucol-treated patients has more capacity for cholesterol efflux
- HDL of probucol-treated patients has a strong anti-oxidative activity

Typical Absorption Profiles (Conjugated Diene Formation) Produced during Oxidation of LDL by AAPH

Influence of HDL Derived from FH Patients on LDL Oxidation by AAPH

Lag phase duration

Oxidation rate

Maximum CD

p<0.01. *p<0.001

Anti-atherogenic Functions of Probucol

Randomized Clinical Trials of Probucol

PQRST	FA	P vs Placebo	lumen volume	e n.s.	Walldius	1994
PART	CoroA	P vs Con	restenosis rate (p	23% vs 58% o<0.001)	Yokoi	1997
MVP	CoroA	P vs MV	repeated PTCA (p	13% vs 26% o<0.009)	Tardif	1997
FAST	CarotA	P vs Pra vs Diet	CV event 2.4% P vs [% vs 4.8% vs 13.6% Diet(p<0.001)	Sawayam	na 2002
PAB	Femor/	A P vs Con	restenosis rate (p	e 23% vs 58% o<0.001)	Gallino	2004
SAKURA	A DiabN	eph P vs Cor	n interval to HD (p	27mo vs 11mo o<0.02)	Endo	2006
POSITIV	E FH	P vs Con	CV event	27% vs 64% (p<0.001)	Yamashi	ta 2008

POSITIVE: Kaplan-Meier Survival Curve (Secondary prevention)

Probucol therapy improves long-term (>10-year) survival after complete revascularization

Hazard ratio of probucol use mortality

No-probucol (n=225) vs Probucol (n=225)

	HR (95% CI)	р	
All-case	0.45 (0.27-0.75)	0.002	

Kasai T et al: Atherosclerosis 220:463-469, 2012

All-cause Death in the Matched Dataset

Atherosclerosis 220:463-469, 2012

Cardiac Death in the Matched Dataset

Non-cardiac Death in the Matched Dataset

Atherosclerosis 220:463-469, 2012

Content of secondary prevention study of probucol

TRI

(Translational Research Informatics Center)

Secondary prevention study

(Number of 860) Japan Entry period: 2 years、 Follow-up period: 3 years Open、Prospective, Random、Multiple

Meta analysis of three countries of cardiovascular

data

Effect confirmation of secondary particular of three countries

Japan(Number of patients:860)

article

Primary endpoint : Cardiovascular events, Secondary endpoint : IMT

Korea (Number of patients:150)

```
China (Number of patients:192)
```

Primary endpoint: IMT, Secondary endpoint: Cardiovascular events

article

Three countries Meta analysis

Take Home Messages

- HDL-cholesterol level is important, but marked hyper-HDL-cholesterolemia is not always protected from atherosclerosis
- The functions of HDL such as cholesterol efflux capacity, anti-oxidant activity and anti-inflammatory property need to be tested
- Enhancement of reverse cholesterol transport (RCT) by CETP may protect CV events rather than inhibition of CETP
- Probucol reduces HDL-C by enhancing CETP and RCT, preventing atherosclerotic cardiovascular diseases and coronary restenosis after PCI