Comparison of Biomarkers for Coronary Plaque Rupture in Patients with Acute Coronary Syndrome

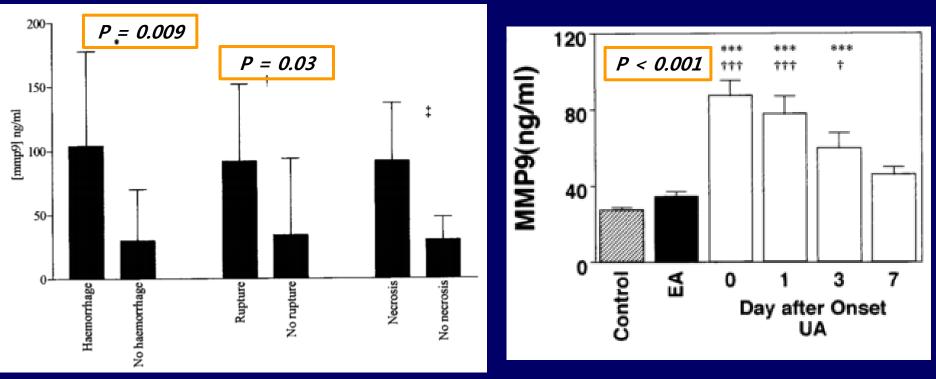
Hyung Joon Joo, Saruul Tseveendee, Jae-Young Cho, Jae Hyung Park, Cheol Woong Yu, Soon Jun Hong, Do-Sun Lim

Korea University Anam Hospital, Seoul, Korea

Background

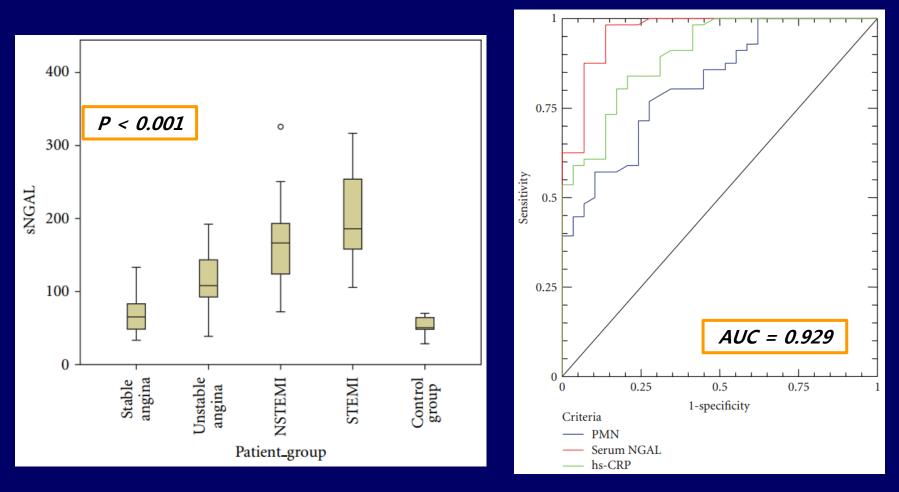
- Biomarkers have become increasingly important in ACS to supplement electrocardiographic findings and patient history because one or both can be misleading

 "Cardiac troponin I and T"
- Some of new markers appear to improve <u>risk</u> <u>stratification</u> in ACS and might be able to supplement the information provided by cardiac troponin


Hochholzer et al. Am Heart J 2010;160:583-94

Biomarker : MMP-9

Kai H et al. J Am Coll Cardiol 1998;32:368–72


Loftus IM et al. Stroke. 2000;31:40-47

- MMP-9 concentration was significantly higher with histological evidence of <u>plaque instability</u> in carotid artery.
- Transient elevation of MMP-9 levels in patients with UA may be associated with the increased expression of MMP-9, probably in activated macrophages or VSMCs in the plaque prone to rupture.

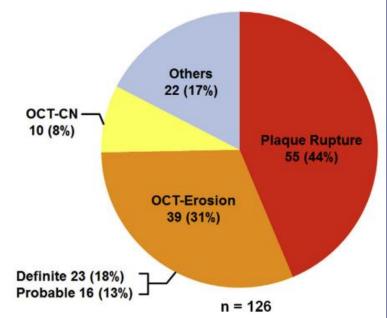
Biomarker : NGAL

Kafkas N et al. Int J Inflam. 2012;2012:189797

 Diagnostic value for serum-NGAL in <u>discriminating ACS patients from</u> patients with SA is high.

Background

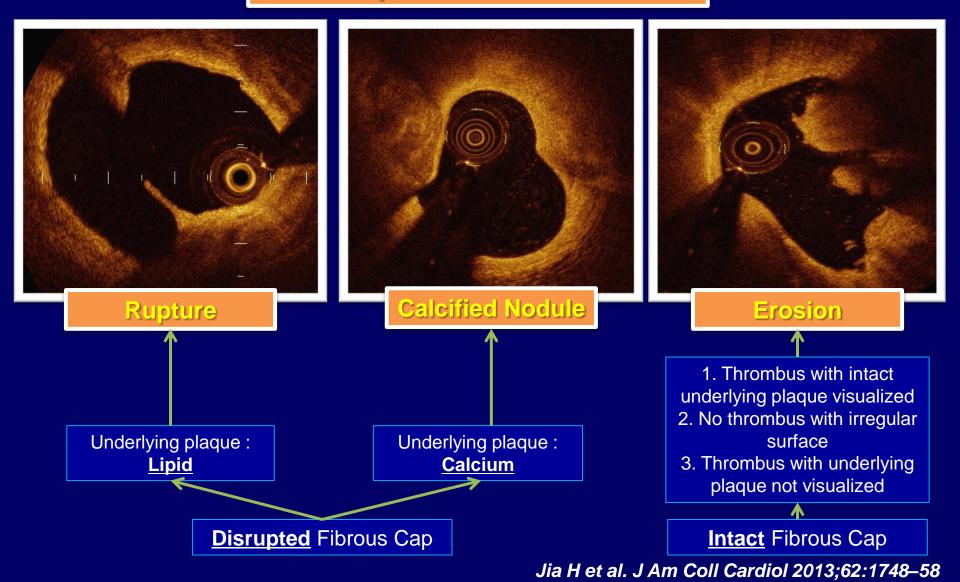
 The 3 most common underlying mechanisms contributing to acute coronary syndrome (ACS) are believed to be plaque rupture (PR), plaque erosion, and calcified nodule (CN)


> Virmani R et al. Arterioscler Thromb Vasc Biol 2000;20:1262–75. Naghavi M et al. Circulation 2003;108:1664–72.

 The frequency of erosion and CN might be underestimated in patients with ACS due to the lack of diagnostic modalities

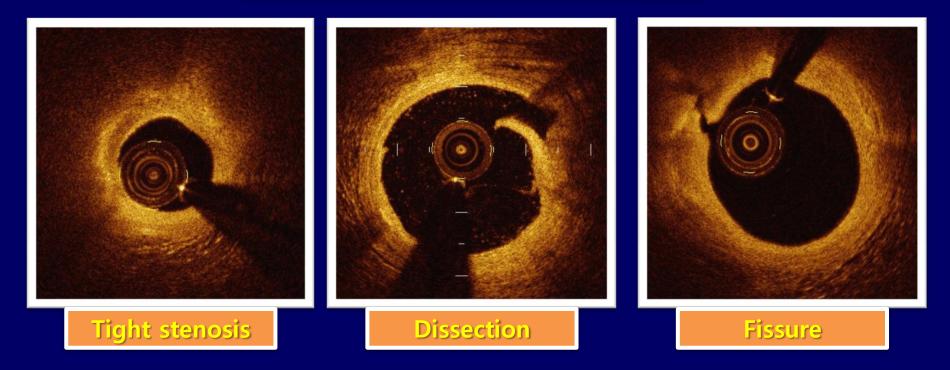
Background

- Optical coherence tomography (OCT) is an emerging intravascular imaging modality with a high resolution which can visualize microstructures of atherosclerotic plaque
- Recent studies are focusing on characterizing the morphological, pathophysiological features of plaque erosion and CN in patients with ACS by OCT



Korea University College of Medicine

Jia H et al. J Am Coll Cardiol 2013;62:1748–58


Intravascular OCT Imaging

Plaque Classification

Intravascular OCT Imaging

Other Features

 To characterize culprit lesions in patients with ACS by OCT and compare the several new biomarkers according to the morphological features of the culprit lesions

Methods

- Retrospective data from Korea University Anam Hospital OCT registry
- A total of 123 patients with ACS [unstable angina (UA, n=85), non-ST elevation myocardial infarction (NSTEMI, n=14), ST elevation myocardial infarction (STEMI, n=24)] who had undergone pre-intervention OCT imaging were included and analyzed
- Demographic, clinical, lesional and procedural data were also analyzed

OCT Analysis

- Optical coherence tomography (OCT) (C7XR Fourier-Domain System, LightLab Imaging, Westford, Mass) was performed (LightLab Imaging, Ilumien Offline review workstation, Ver D.O 2, MA, USA).
- Analysis encompassed the culprit lesion of the vessel on the basis of coronary angiogram and OCT.

Laboratory Analysis

- MMP-9 was quantified using Luminex's xMAP Technology with the Milliplex kits (Millipore, Billerica, MA), which is similar to the sandwich ELISA procedure, according to the manufacturer's instructions.
- Plasma NGAL was determined using an in-house time resolved immunofluorometric (TRIFMA) assay based on NGAL antibodies and recombinant NGAL from R&D Systems (Abingdon, UK)

Results: Baseline Patient Characteristics (1)

Variable	STEMI (n= 24)	NSTEMI (n= 14)	UA (n= 85)	p- value
Age (year)	54.70±9.87	65.67±11.16	68.24±13.01	0.022
Male sex (%)	24 (100.0%)	10 (72.7%)	55(63.2%)	0.113
BMI (kg/m2)	25.59±1.86	23.73±2.67	22.80±1.90	0.018
Comorbidity				
Hypertension, n (%)	19 (75.0%)	6 (45.5%)	46 (52.6%)	0.419
Diabetes mellitus, n (%)	9 (37.5%)	8 (54.5%)	27 (31.6%)	0.460
Smoking, n (%)	11 (44.4%)	10 (72.7%)	14 (15.8%)	0.008
Dyslipidemia, n (%)	3 (12.5%)	5 (36.4%)	27 (31.6%)	0.494
CAD family history, n (%)	9 (37.5%)	5 (36.4%)	26 (22.2%)	0.622

Results: Baseline Patient Characteristics (2)

Variable	STEMI (n= 24)	NSTEMI (n= 14)	UA (n= 85)	p- value
Laboratory data				
Creatinine (mg/dl)	2.59±4.56	0.94±0.25	0.94±0.22	0.148
Glucose (mg/dl)	153.11±73.95	140.64±40.26	140.56±55.49	0.846
Total cholesterol (mg/dl)	166.89±28.03	181.73±50.61	186.22±48.14	0.577
Triglyceride (mg/dl)	105.00±60.83	103.10±56.220	147.42±78.10	0.169
HDL-cholesterol (mg/dl)	37.89±7.64	44.30±8.06	43.58±10.75	0.267
LDL-cholesterol (mg/dl)	115.33±27.79	126.40±43.27	130.57±36.48	0.599
Biomarkers (n=39)				
NGAL (ng/mL)	4.52±4.27	2.67±1.93	1.78±0.70	0.036
MMP-9 (ng/mL)	3.72±3.94	3.69±2.84	2.12±1.73	0.397
hs-CRP (ng/mL)	21.83±21.71	18.59±17.55	17.05±17.74	0.830

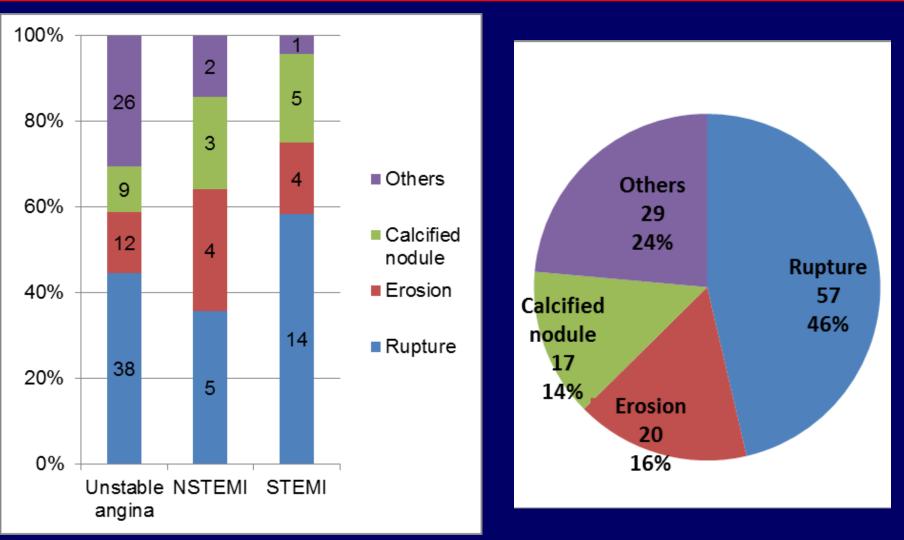
Results:

Angiographic and procedural data (1)

Var	iable	STEMI (n= 24)	NSTEMI (n= 14)	UA (n= 85)	p- value
	TIMI 0	3 (11.1%)	2 (18.2%)	0	
TIMI flow	TIMI 1	3 (11.1%)	4 (27.3%)	5 (5.3%)	0.122
grade, n (%)	TIMI 2	8 (33.3%)	0	18 (21.1%)	0.122
	TIMI 3	10 (44.4%)	8 (54.5%)	63 (73.7%)	
Culorit	LAD	19 (77.8%)	9 (63.6%)	63 (73.7%)	
Culprit vessel, n (%)	LCx	0	1 (9.1%)	13 (15.8%)	0.580
vessei, II (70)	RCA	5 (22.2%)	4 (27.3%)	9 (10.5%)	
Segment of	Prox	8 (33.3%)	9 (63.6%)	45 (52.6%)	
culprit	Mid	16 (67.6%)	4 (27.3%)	40 (47.4%)	0.275
vessel,n (%) Distal		0	1 (9.1%)	0	
Multivessel of	lisease, n (%)	16 (67.6%)	9 (63.6%)	40 (47.4%)	0.728
	Grade 0	10 (44.4%)	9 (63.6%)	49 (57.9%)	
Thrombus	Grade 1	3 (11.1%)	2 (18.2%)	13 (15.8%)	
burden,	Grade 2	3 (11.1%)	0	9 (10.5%)	0.298
n (%)	Grade 3	0	2 (18.2%)	9 (10.5%)	
	Grade 4	8 (33.3%)	0	5 (5.3%)	

Results: Angiographic and procedural data (2)

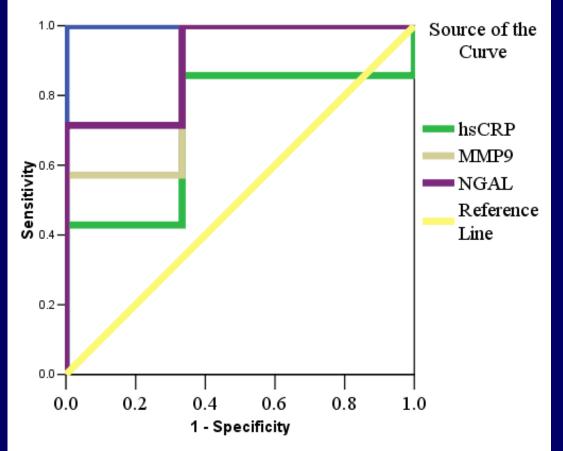
Variable	STEMI (n= 24)	NSTEMI (n= 14)	UA (n= 85)	p-value			
Quantitative Coronary Angiography							
Reference diameter (mm)	3.09±0.27	3.07±0.40	2.95±0.23	0.364			
Mean lumen diameter (mm)	0.50±0.40	0.68±0.58	1.05±0.53	0.031			
Stenosis area (%)	92.00±9.94	91.36±8.27	89.17±7.64	0.663			
Lesion length (mm)	11.62±4.81	13.27±5.29	16.73±6.75	0.101			
Gensini score	73.62±14.52	62.17±15.63	57.00±12.89	0.050			



Comparison of OCT Images

Variable	STEMI (n= 24)	NSTEMI (n= 14)	UA (n= 85)	p-value
Rupture	14 (58.3)	5 (35.7)	38 (44.7)	0.347
Erosion	4 (16.7)	4 (28.6)	12 (14.1)	0.373
Calcified nodule	5 (20.8)	3 (21.4)	9 (10.6)	0.279
Others	1 (4.2)	2 (14.3)	26 (30.6)	0.013

Plaque rupture (PR) was the most frequent finding in patients with ACS !!


Serum level of MMP-9, hs-CRP, NGAL

OCT findings	MMP-9 (ng/mL)	р	hs-CRP (ng/mL)	р	NGAL (ng/mL)	р
Plaque rupture (n=24)	3.75±1.88		20.52±18.07		2.77±1.39	
		0.028		0.011		0.045
Non-ruptured plague (n=15)	1.72±1.18		7.82±6.63		1.73±0.44	

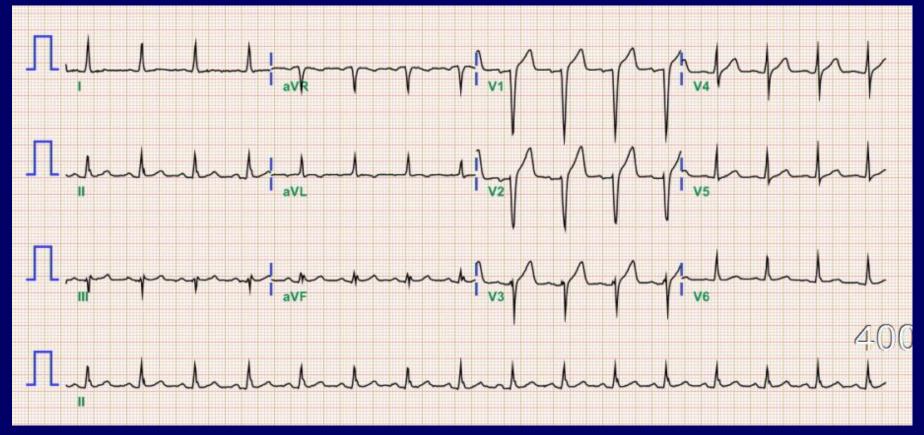
NGAL was the most meaningful biomarker to detect plaque rupture determined by OCT

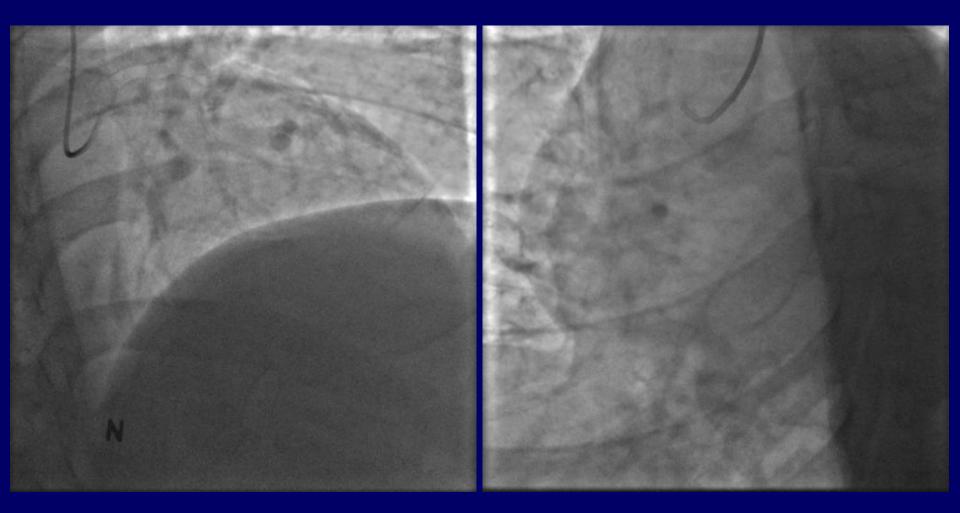
ROC curves

Area under the curve (AUC) were hs-CRP 0.714 (p=0.305), MMP-9 0.857 (p=0.087), NGAL 0.905 (p=0.050), consistently.

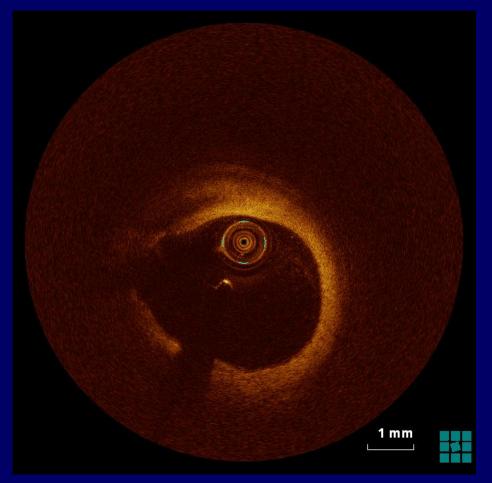
Conclusion

The main findings of present study were the followings:


- OCT detected more frequently ruptured plaques in STEMI patients, and 44.7% of the UA patients had plaque rupture.
- Elevated concentration of NGAL, MMP-9 and hs-CRP were related to the presence of ruptured coronary plaques.
- The NGAL could predict the presence of plaque rupture with excellent accuracy, superior to MMP-9 and hs-CRP.


M/49

Visit to ER for chest pain (2 month)CK-MB3.02 ng/mlMedicated for HTN, T2DM, DyslipidemiaNGAL6.43 ng/ml


Coronary angiography

Optical coherence tomography

Right coronary artery

Thank you for your attention!

