Pioglitazone Increased Circulating MicroRNA-24 with Decreases in Coronary Neointimal Hyperplasia in Type 2 Diabetes: OCT Analysis

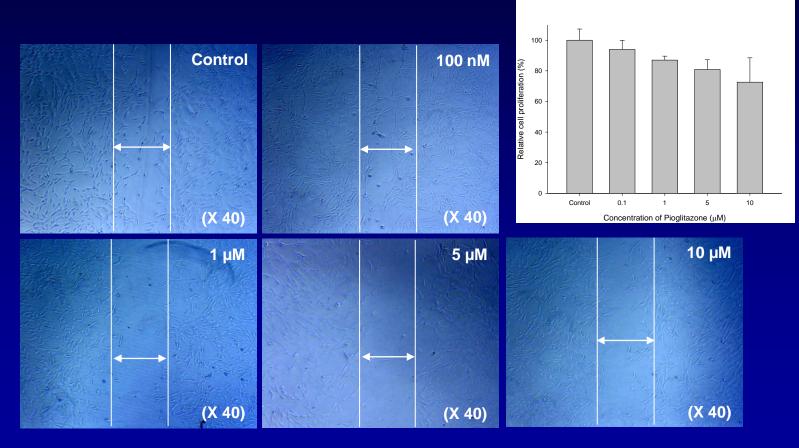
Soon Jun Hong, Seung Cheol Choi, Jae Young Cho, Hyung Joon Joo, Jae Hyoung Park, Cheol Woong Yu, Do-Sun Lim

**Korea University Anam Hospital** 

## Background

- Endothelial dysfunction is the first step in the progression in <u>atherosclerosis</u>.
- Endothelial dysfunction has been more frequently documented in patients with <u>type 2</u> <u>diabetes</u>.

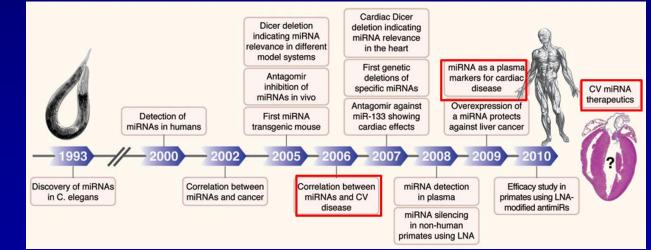
Hong SJ et al. CCI 2010;76:924-33. Manfrini O et al. IJC 2013 Wong WT et al. J Cardiovasc Pharma 2013


## **Diabetes & Pioglitazone**

- Early decreases in the number of NK cells, circulating TNF-α, IL-6, and MCP-1 concentration, and the expression of CCR2 on circulating CD14+ cells after pioglitazone treatment may have <u>abated</u> <u>inflammation</u>, thereby reducing atherosclerosis progression.
- The <u>early decreases in SMC migration and</u> proliferation in the pioglitazone group have been documented in type 2 diabetic patients.

Hong SJ et al. Heart 2006;92:1119-24. Hong SJ et al. AJC 2007 Hong SJ et al. ATVB. 2010;30:2655-65.

### Effects of Pioglitazone on SMC Proliferation in Dose-Dependent Manner.

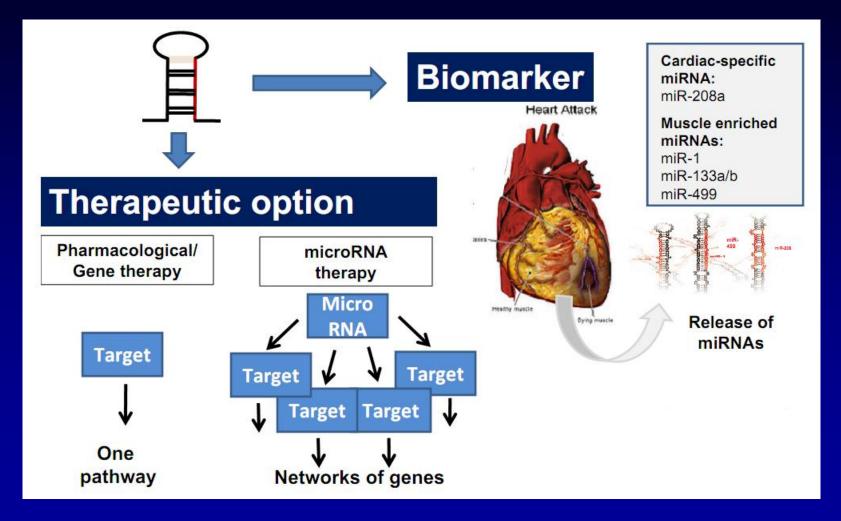

### (MTT proliferation assay)



Hong SJ et al. ATVB. 2010;30:2655-65.

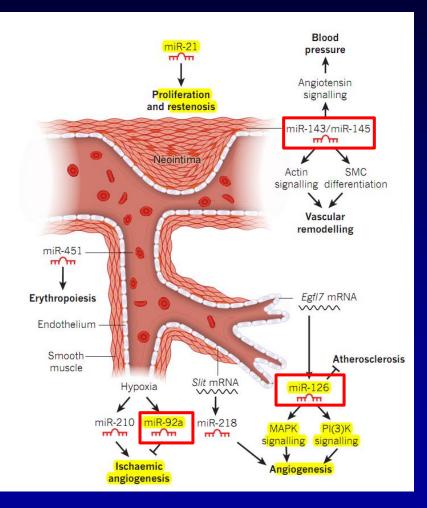
# What is MicroRNAs (miRNAs)?

- Has very few nucleotides (an average of 22).
- <u>Post-transcriptional regulators</u> that bind to complementary sequences on <u>target mRNAs</u>.
- The human genome may encode > 1,000 miRNAs.
- Target about 60% of mammalian genes.
- Aberrant expression of miRNAs implicated in <u>numerous</u>




Bartel DP et al. Cell 2009;136:215-233. Circ Res 2011;108:219-234.

5


disease states.

## **miRNA Function**



# Background

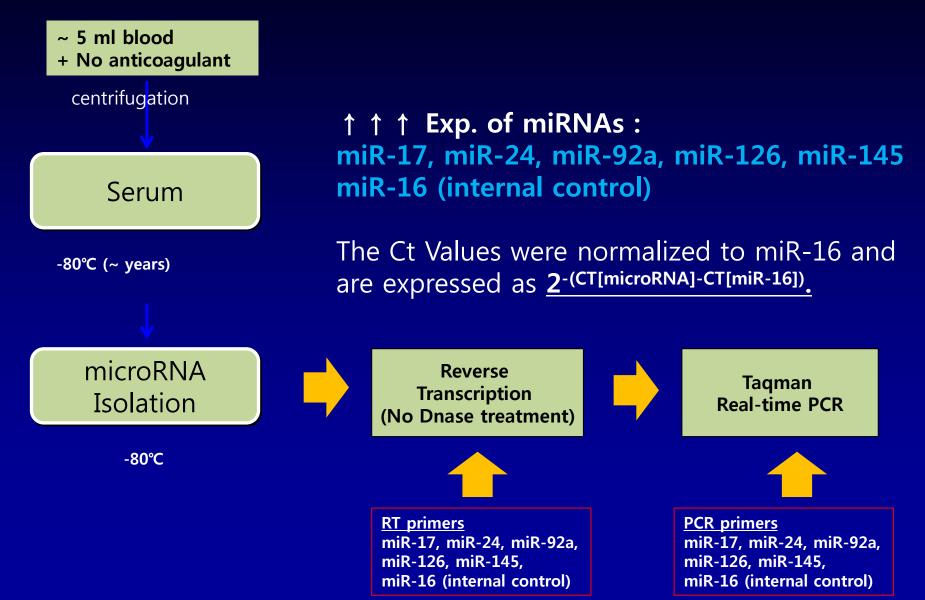
- miRNA-126, -24 expressed in endothelial cells and essential for vascular development.
- miRNA-17~92 cluster modulate angiogenesis.
- miRNA-143/145 expressed in SMC.
- miRNA-1 and -133 expressed in cardiomyocytes and control myogenesis.
- miRNA-208a, -208b expressed by introns of myosin heavy chains.



7

## **Objectives**

- We prospectively compared
- 1. The effects of pioglitazone on coronary neointimal hyperplasia and changes in microRNAs with their correlation to neointimal hyperplasia in type 2 diabetic patients during the 9-month f/u.
- 2. The effects of pioglitazone in improving endothelial function
- 3. The effects of pioglitazone in systemic inflammation


### **Methods:**

**Identification of Endothelial Function-Related miRNAS** 

- Pilot Study: Detection of miRNAs expressed in peripheral blood of patients with >10% FMD (n=5), <10% FMD (n=3)</li>
- ↑ ↑ Exp. of miRNAs : miR-17, miR-24, miR-92a, miR-126, miR-145 miR-16 (internal control)
- Exp. of miRNAs : miR-21, miR-26, miR-143, miR-155, miR-423-5p
- No Exp. of miRNAs : miR-1, miR-10a, miR-100, miR-204, miR-208a

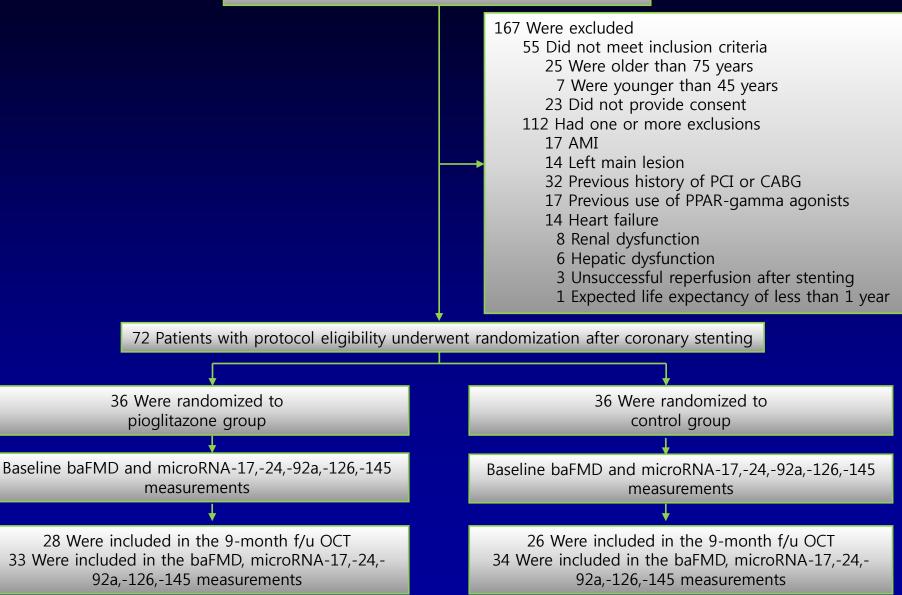
### **Methods:**

### **Identification of Endothelial Function-Related miRNAs**



## Methods

### The Inclusion Criteria:


- 1. Type 2 diabetic patients
- 2. Aged 45 to 75 years

### • The Exclusion Criteria:

- 1. Use of pioglitazone within 3 months
- 2. AMI
- 3. Abnormal LFT (AST or ALT > 3 times upper normal limit)
- 4. Renal dysfunction (Cr > 2.0 mg/dL)
- 5. LVEF < 40%
- 6. LM lesion
- 7. Previous history of PCI or CABG
- 8. Unsuccessful reperfusion after stenting
- 9. Expected life expectancy of less than 1 year

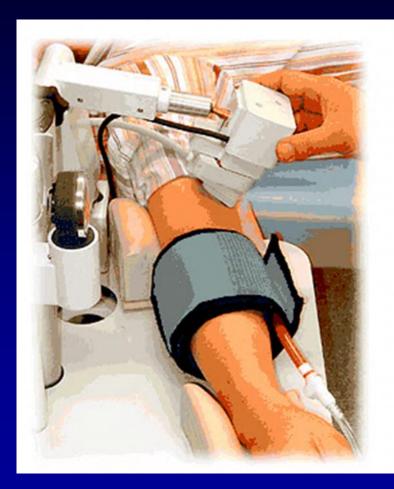
### **Study Protocol**

239 type 2 diabetic patients underwent screening



K

# **Endpoints**


### Primary Endpoints:

1. To compare changes in neointimal volume with OCT and in the circulating levels of microRNA-17, -24, -92a, -126 and -145 which have been known as indicators of endothelial cell migration and atherosclerosis progression during the 9-month f/u.

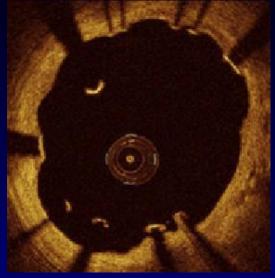
### Secondary Endpoints:

- To compare changes in baFMD between the 2 groups during the 9-month follow-up.
- 2. To compare changes in inflammatory markers such as hsCRP, IL-6, TNF- $\alpha$ , adiponectin, sICAM-1, and sVCAM-1
- 3. To compare changes in the insulin resistance index such as the HOMA index during the 9-month f/u.

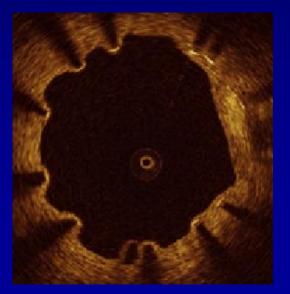
### **Measurements of Flow-Mediated Dilation**



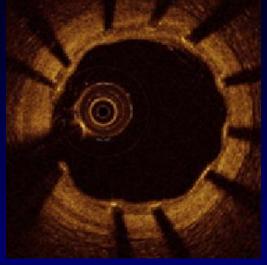
- → Increase forearm cuff pressure up to 200 mmHg
- → Obstruct forearm blood flow for 5 minutes and then release the cuff quickly
- → Measure changes in brachial artery dilatation
- → Normal  $\ge$  10% increase in baFMD
- → With brachial artery endothelial dysfunction, <10% increase</p>


## Optical Coherence Tomography Image Analysis

- OCT data were analyzed at the Korea University OCT Core Laboratory.
- OCT was performed after 200µg intracoronary nitroglycerin injection.
- OCT images have been acquired using a nonocclusive technique with the C7XR system (LightLab Imaging, Inc., Westford, MA),
- <u>Mean area and volumes of lumen, stent, and neointimal hyperplasia</u> were calculated along the entire stented segment.
- The center of the luminal surface of the strut was determined for each strut, and its distance to the lumen contour was calculated to determine <u>strut-level neointimal thickness</u>.
- The number of struts without coverage was counted for each frame in order to count the total number of uncovered struts per lesion.


## Optical Coherence Tomography Image Analysis

- Struts were categorized as
  - 1. <u>Uncovered</u> when a tissue layer on the endoluminal surface was not visible,
  - 2. <u>Covered embedded</u> struts when covered by tissue and not interrupting the smooth lumen contour
  - 3. <u>Covered rhombus</u> struts when covered by tissue but extending into the lumen
  - 4. <u>Malapposed</u> if the distance from the endoluminal surface of the strut to the adjacent lumen contour was greater than the sum of the metal and polymer thickness
- <u>Neointima</u> was the tissue between the luminal border and the inner border of the struts.

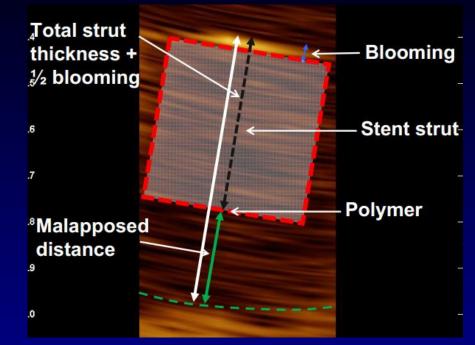

### **Stent Strut Apposition & Coverage**

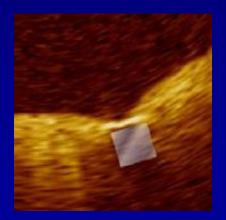


**Malapposed Not covered** 

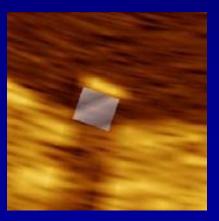


**Malapposed Covered** 

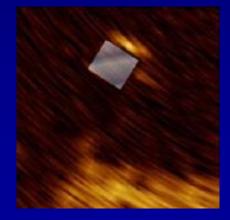




**Apposed Covered** 




**Apposed Not covered** 

### **Classification of Stent Strut Apposition**






Embedded



Protruding

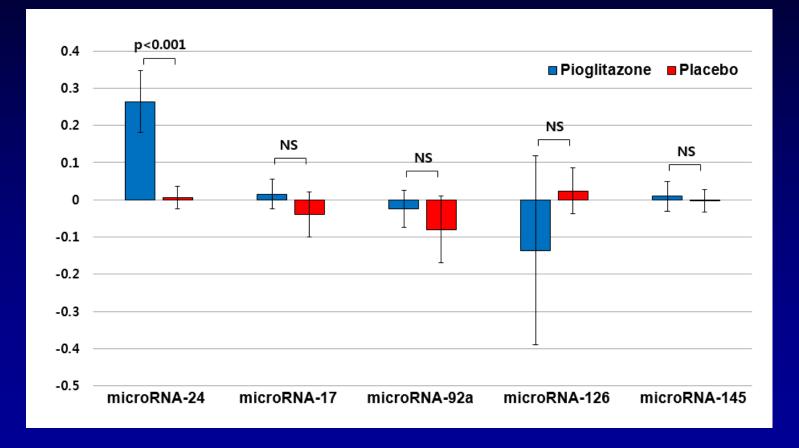


Malapposed

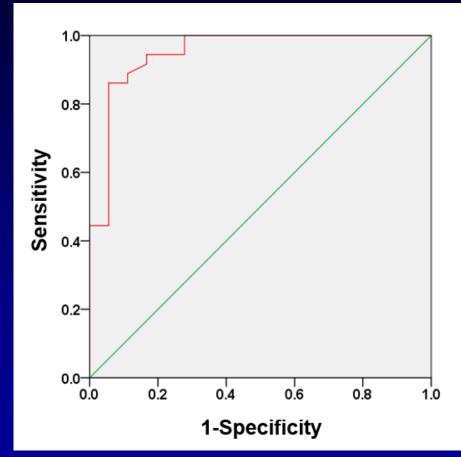
## **Results: Baseline Characteristics**

| Variable                      | Pioglitazone Group<br>(n=36) | Control Group<br>(n=36) | P value |
|-------------------------------|------------------------------|-------------------------|---------|
| Age (years)                   | 58.3 ± 11.8                  | 60.0 ± 12.7             | 0.282   |
| Male sex                      | 19 (52.8 %)                  | 21 (58.3 %)             | 0.635   |
| Body mass index (kg/m²)       | 24.6 ± 3.9                   | 24.4 ± 3.5              | 0.801   |
| Risk factors                  |                              |                         |         |
| Hypertension                  | 14 (38.9 %)                  | 13 (36.1 %)             | 0.808   |
| Hyperlipidemia                | 12 (33.3 %)                  | 13 (36.1 %)             | 0.804   |
| Current smoking               | 9 (25.0 %)                   | 7 (19.4 %)              | 0.571   |
| Family history of CAD         | 5 (13.9 %)                   | 8 (22.2 %)              | 0.358   |
| Past history of TIA or stroke | 1 (2.8 %)                    | 1 (2.8 %)               | 1.000   |
| LVEF (%)                      | 57.1 ± 9.5                   | 56.9 ± 10.1             | 0.894   |
| Stable angina                 | 20 (55.6 %)                  | 18 (50.0 %)             | 0.637   |
| Unstable angina               | 16 (44.4 %)                  | 18 (50.0 %)             | 0.637   |
| Duration of diabetes (months) | 28 ± 24                      | 26 ± 24                 | 0.676   |

#### Hong SJ et al. Circ J. 2014 in press


## **OCT Parameters at 9-Month F/U**

| Variable                                    | Pioglitazone    | Control         | P value |
|---------------------------------------------|-----------------|-----------------|---------|
|                                             | (n=36)          | (n=36)          |         |
| Number of patients with 9-month follow-up   | 28 (77.8 %)     | 26 (72.2 %)     | 0.586   |
| Number of target lesions                    | 38              | 38              |         |
| Mean stent length (mm)                      | 26.3 ± 6.8      | 27.7 ± 5.8      | 0.155   |
| Neovascularization                          | 2 (7.1 %)       | 3 (11.5 %)      | 0.663   |
| Frequency of intracoronary thrombus         | 2 (7.1 %)       | 1 (3.8 %)       | 1.000   |
| Cross-section level analysis                |                 |                 |         |
| Number of struts analyzed per cross section | $6.7 \pm 1.9$   | 6.5 ± 1.8       | 0.872   |
| <u>Mean lumen area, mm<sup>2</sup></u>      | 5.85 ± 2.07     | 5.08 ± 1.88     | < 0.001 |
| Mean stent area, mm <sup>2</sup>            | 6.78 ± 2.34     | 6.98 ± 2.19     | 0.768   |
| <u>Mean neointimal area, mm<sup>2</sup></u> | 0.93 ± 0.78     | $1.90 \pm 1.43$ | < 0.001 |
| <u>Lumen volume, mm<sup>3</sup></u>         | 157.23 ± 79.44  | 143.61 ± 67.04  | 0.021   |
| Stent volume, mm <sup>3</sup>               | 181.43 ± 104.91 | 196.32 ± 110.19 | 0.115   |
| <u>Neointimal volume, mm<sup>3</sup></u>    | 25.02 ± 17.78   | 55.10 ± 30.01   | < 0.001 |
| Percentage net volume obstruction, %        | $13.9 \pm 10.1$ | 28.5 ± 13.4     | < 0.001 |


## **OCT Parameters at 9-Month F/U**

| Variable                                        | Pioglitazone    | Control         | P value |
|-------------------------------------------------|-----------------|-----------------|---------|
|                                                 | (n=36)          | (n=36)          |         |
| Strut-level analysis                            |                 |                 |         |
| Total number of analyzed struts (total)         | 15,820          | 16,654          |         |
| Number of covered struts (total)                | 15,283          | 16,203          |         |
| Frequency of covered struts per lesion, %       | 96.7 ± 5.3      | 97.0 ± 6.2      | 0.780   |
| Covered embedded struts                         | 94.9 ± 8.1      | 95.1 ± 8.7      | 0.879   |
| Covered rhombus struts                          | 1.7 ± 2.8       | 2.0 ± 3.2       | 0.803   |
| Number of uncovered struts (total)              | 537             | 451             |         |
| Frequency of uncovered struts per lesion, %     | 3.3 ± 5.2       | 3.0 ± 5.8       | 0.803   |
| Uncovered well apposed struts                   | $3.2 \pm 4.0$   | 2.9 ± 4.8       | 0.837   |
| Uncovered malapposed struts                     | $0.1 \pm 1.3$   | $0.1 \pm 1.1$   | 0.914   |
| Mean neointimal thickness of covered struts, mm | $0.16 \pm 0.15$ | 0.28 ± 0.34     | < 0.001 |
| Neointimal unevenness score                     | $1.68 \pm 0.31$ | $1.73 \pm 0.35$ | 0.571   |
| Peri-strut low-intensity area, %                | 2.92 ± 1.75     | 3.12 ± 1.65     | 0.666   |

### Changes in MicroRNA-17, -92a, -126, -145 During the F/U



### Receiver-Operating-Characteristic Curve and the Corresponding Area Under the Curve for the Changes in MicroRNA-24



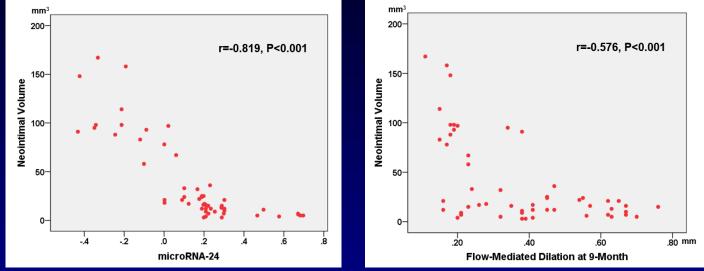
In detecting neointimal volume greater than 25 mm3. Cut-off value for the changes in microRNA-24 was 0.1715 with sensitivity of 0.861 and specificity of 0.944.

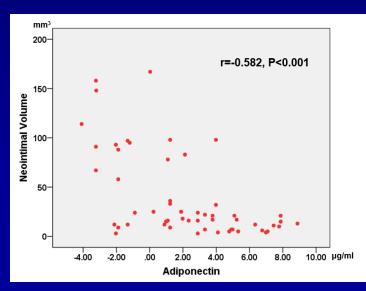
## Changes in Brachial Artery FMD During the 9-Month F/U

| Variables                             | Pioglitazone Group<br>(n=36) |             | Control Group<br>(n=36) |            |
|---------------------------------------|------------------------------|-------------|-------------------------|------------|
|                                       | Baseline                     | At 9-month  | Baseline                | At 9-month |
| Brachial artery diameter at rest (mm) | 3.96±0.42                    | 4.00±0.40   | 3.99±0.39               | 4.01±0.41  |
| Flow-mediated dilation (mm)           | 4.18±0.41                    | 4.46±0.39*† | 4.25±0.38               | 4.30±0.40  |
| Changes from at rest (mm)             | 0.22±0.11                    | 0.47±0.14*† | 0.25±0.17               | 0.28±0.18  |
| Nitroglycerin-mediated dilation (mm)  | 4.48±0.48                    | 4.58±0.45   | 4.52±0.47               | 4.60±0.46  |
| Changes from at rest (mm)             | 0.53±0.20                    | 0.58±0.23   | 0.53±0.22               | 0.60±0.24  |

## **Changes in Inflammatory Markers**

|                                        | Pioglitazone Group (n=36) |                           | Control G        | Group (n=36)   |
|----------------------------------------|---------------------------|---------------------------|------------------|----------------|
| Variables                              | Baseline                  | After 9 months            | Baseline         | After 9 months |
| <u>IL-6 (pg/ml)<sup>‡</sup></u>        | 4.37 ± 4.01               | 1.81 ± 1.31 <sup>+*</sup> | 4.77 ± 3.94      | 2.90 ± 2.28*   |
| Changes from baseline (pg/ml)          | -2.57                     | ± 2.19 †                  | -1.87            | 7 ± 1.71       |
| <u>TNF-α (pg/ml)<sup>‡</sup></u>       | 6.83 ± 4.76               | 2.82 ± 3.05 **            | 6.16 ± 5.27      | 4.61 ± 3.60*   |
| Changes from baseline (pg/ml)          | -4.02 ± 1.77 †            |                           | $-1.52 \pm 1.37$ |                |
| hsCRP (mg/L) <sup>‡</sup>              | 4.18 ± 3.01               | 1.24 ± 1.22*              | 4.56 ± 4.10      | 1.52 ± 1.60*   |
| Changes from baseline (mg/L)           | -2.93                     | 3 ± 2.62                  | $-3.03 \pm 3.09$ |                |
| <u>Adiponectin (µg/ml)<sup>‡</sup></u> | 3.98 ± 3.99 †             | 7.98 ± 5.65 **            | 5.41 ± 4.66      | 5.65 ± 5.32    |
| Changes from baseline (µg/ml)          | 4.01                      | ± 2.93 †                  | 0.23 ± 1.15      |                |
| sICAM-1 (ng/mL) <sup>‡</sup>           | 742 ± 501                 | 657 ± 508                 | 575 ± 432        | 502 ± 337      |
| Changes from baseline (ng/mL)          | -85 ± 80                  |                           | -75 ± 94         |                |
| <u>sVCAM-1 (ng/mL)<sup>‡</sup></u>     | 976 ± 588                 | 769 ± 393 **              | $1065 \pm 692$   | $1069 \pm 811$ |
| Changes from baseline (ng/mL)          | -207 ± 213 † 2 ± 460      |                           | ± 460            |                |


p < 0.05 compared with baseline. p < 0.05 compared with the Control Group.


## **Changes in Lipid Profiles**

|                                   | Pioglitazone Group (n=36) |                | Control Group (n=36) |                    |
|-----------------------------------|---------------------------|----------------|----------------------|--------------------|
| Variables                         | Baseline                  | After 9 months | Baseline             | After 9 month<br>s |
| Total cholesterol (mg/dl)         | 214 ± 60                  | 161 ± 47*      | 219 ± 48             | 156 ± 42*          |
| Changes from baseline (mg/dl)     | -53 ± 60                  |                | -63 ± 56             |                    |
| LDL-cholesterol (mg/dl)           | $149 \pm 66$              | 90 ± 46*       | 159 ± 77             | 89 ± 45*           |
| Changes from baseline (mg/dl)     | -60                       | ) ± 45         | -68 ± 55             |                    |
| HDL-cholesterol (mg/dl)           | 39 ± 29                   | 43 ± 22        | 37 ± 28              | 40 ± 19            |
| Changes from baseline (mg/dl)     | 3 ± 10                    |                | 3                    | ± 8                |
| Triglyceride (mg/dl) <sup>‡</sup> | 135 ± 99                  | 119 ± 79       | 129 ± 83             | 123 ± 60           |
| Changes from baseline (mg/dl)     | -16 ± 57                  |                | -7 ± 60              |                    |

p < 0.05 compared with baseline. p < 0.05 compared with the Control Group.

## **Correlation Between Neointimal Volume and Various Parameters**





Korea University Anam Hospital

### Comparison of Adverse Clinical Events Between the 2 Groups During the 9-Month F/U

| Variable                  | Pioglitazone Group (n=36) | Control Group (n=36) | P value |
|---------------------------|---------------------------|----------------------|---------|
| Death (%)                 | 0 (0.0 %)                 | 0 (0.0 %)            | NA      |
| Myocardial infarction (%) | 0 (0.0 %)                 | 1 (2.8 %)            | 1.000   |
| New onset CHF (%)         | 1 (2.8 %)                 | 0 (0.0 %)            | 1.000   |
| Fracture (%)              | 0 (0.0 %)                 | 0 (0.0 %)            | NA      |
| Stroke                    | 0 (0.0 %)                 | 0 (0.0 %)            | NA      |
| Bladder cancer (%)        | 0 (0.0 %)                 | 0 (0.0 %)            | NA      |

## Summary

 Type 2 diabetic patients treated with pioglitazone not only benefit from its known hypoglycemic and LDL-cholesterol lowering effects but also from its anti-inflammatory and increasing circulating microRNA-24 levels

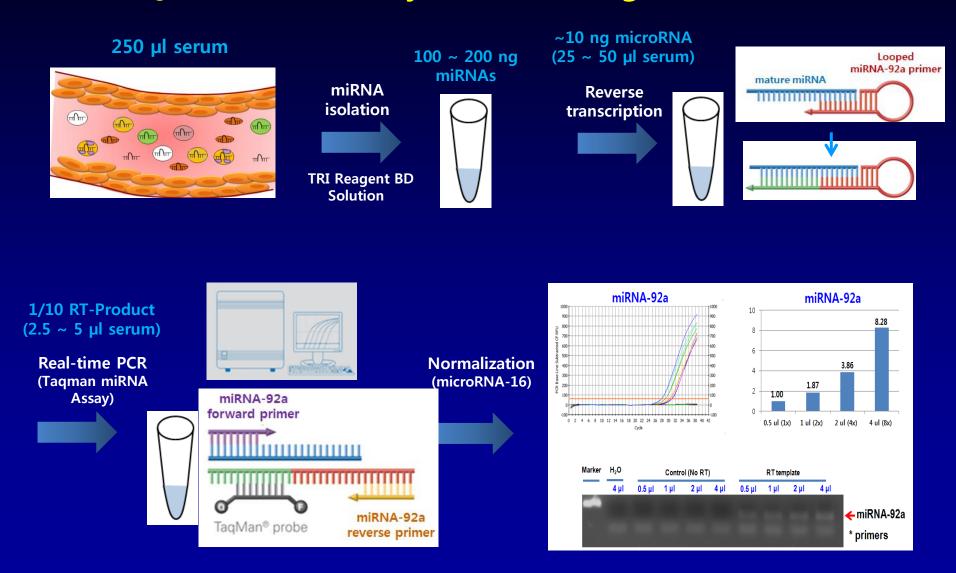
 → improving endothelial dysfunction and eventually decreasing neointimal proliferation in type 2 diabetic patients.

### Conclusions

- 1. We have found that circulating level of microRNA-24 was aberrantly decreased in type 2 diabetic patients with excessive neointimal hyperplasia.
- 2. Therefore, modulation of microRNA-24 expression by pharmacological approach such as administering pioglitazone has strong down-regulating effects on neointimal proliferation in type 2 diabetic patients.
- 3. Circulating microRNA-24 could be used as a potential novel biomarker for predicting excessive neointimal hyperplasia in type 2 diabetic patients after coronary stent implantation.

## **Thank You For Your Attention!**




Korea University Anam Hospital



- Several studies highlight the beneficial effect of <u>pioglitazone</u> in reducing coronary atherosclerosis in type 2 diabetic patients.
- However, the U.S. FDA has informed the public that use of the pioglitazone for more than 1 year may be associated with an increased risk of <u>bladder cancer</u> <u>especially for men</u>.
- A meta-analysis suggests that the pioglitazone confers excess risk for <u>fractures especially for women</u>.

Hong et al. AJC 2007 Loke YK et al. CMAJ 2009;180:32. Strom A et al. *Circ Res.* 2007;101(8):e83-89. Finn AV et al. *Circulation.* 2005;112(2):270-278.

### Methods: Quantitative Assay of Circulating microRNAs



### **Medications at Baseline**

| Variable                        | Pioglitazone Group | Control Group | P value |
|---------------------------------|--------------------|---------------|---------|
|                                 | (n=36)             | (n=36)        |         |
| Medication at baseline          |                    |               |         |
| Oral antidiabetic therapy       | 29 (80.6 %)        | 31 (86.1 %)   | 0.527   |
| Biguanides                      | 20 (55.6 %)        | 24 (66.7 %)   | 0.334   |
| α-Glucosidase inhibitors        | 8 (22.2 %)         | 11 (30.6 %)   | 0.422   |
| Sulfonylureas                   | 16 (44.4 %)        | 17 (47.2 %)   | 0.813   |
| Insulin                         | 5 (13.9 %)         | 4 (11.1 %)    | 1.000   |
| Aspirin                         | 26 (72.2 %)        | 22 (61.1 %)   | 0.317   |
| ACE inhibitor                   | 3 (8.3 %)          | 4 (11.1 %)    | 1.000   |
| Angiotensin II receptor blocker | 11 (30.6 %)        | 9 (25.0 %)    | 0.599   |
| β-blocker                       | 9 (25.0 %)         | 6 (16.7 %)    | 0.384   |
| Calcium channel blocker         | 12 (33.3 %)        | 14 (38.9 %)   | 0.624   |
| Diuretics                       | 5 (13.9 %)         | 3 (8.3 %)     | 0.710   |
| Nitrate                         | 13 (36.1 %)        | 17 (47.2 %)   | 0.339   |
| Nicorandil                      | 3 (8.3 %)          | 3 (8.3 %)     | 1.000   |

### Comparison of Angiographic Parameters During the 9-Month F/U

| Variable                             | Pioglitazone Group (n=36) | Control Group (n=36) | P value |
|--------------------------------------|---------------------------|----------------------|---------|
| Number of target lesions             | 46                        | 48                   |         |
| Target Vessel                        |                           |                      |         |
| Left anterior descending artery      | 24 (52.2 %)               | 22 (45.8 %)          | 0.539   |
| Left circumflex artery               | 7 (15.2 %)                | 10 (20.8 %)          | 0.479   |
| Right coronary artery                | 15 (32.6 %)               | 16 (33.3 %)          | 0.940   |
| Baseline                             |                           |                      |         |
| Reference diameter (mm)              | 2.81 ± 0.50               | 2.76 ± 0.45          | 0.533   |
| In-stent minimum lumen diameter (mm) | 0.68 ± 0.27               | 0.61 ± 0.29          | 0.672   |
| In-stent percentage of stenosis      | 75.8 ± 8.7                | 77.9 ± 9.6           | 0.801   |
| Mean lesion length (mm)              | 23.1 ± 9.1                | 24.2 ± 9.4           | 0.729   |
| Postprocedure                        |                           |                      |         |
| Reference diameter (mm)              | 2.84 ± 0.46               | 2.83 ± 0.45          | 0.859   |
| In-stent minimum lumen diameter (mm) | 2.61 ± 0.31               | 2.58 ± 0.29          | 0.906   |
| In-stent percentage of stenosis      | 8.1 ± 9.4                 | 8.8 ± 9.3            | 0.722   |
| Acute gain (mm)                      | 1.94 ± 0.34               | 1.97 ± 0.36          | 0.635   |
| Mean stent length (mm)               | 26.1 ± 7.0                | 27.9 ± 6.0           | 0.191   |
| Mean stent diameter (mm)             | 2.8 ± 0.4                 | 2.8 ± 0.3            | 0.937   |
| Number of patients with 9-month f/u  | 28 (77.8 %)               | 26 (72.2 %)          | 0.586   |
| 9-month follow-up                    |                           |                      |         |
| Reference diameter (mm)              | 2.86 ± 0.51               | 2.87 ± 0.49          | 0.914   |
| In-stent minimum lumen diameter (mm) | 2.50 ± 0.20               | 2.39 ± 0.17          | 0.023   |
| In-stent percentage of stenosis      | 12.6 ± 9.1                | 16.7 ± 7.5           | 0.039   |
| Late lumen loss (mm)                 | 0.10 ± 0.15               | 0.19 ± 0.24          | 0.058   |
| Binary restenosis                    | 2 (5.6 %)                 | 3 (8.3 %)            | 1.000   |
| Target lesion revascularization      | 1 (2.8 %)                 | 2 (5.6 %)            | 1.000   |

### **Changes in Insulin Resistance**

|                                       | Pioglitazone Group (n=36) |                | Control Group (n=36) |                |
|---------------------------------------|---------------------------|----------------|----------------------|----------------|
| Variables                             | Baseline                  | After 9 months | Baseline             | After 9 months |
| Fasting insulin (µU/mL) <sup>‡</sup>  | 12.8±4.5                  | 9.4±3.8*       | 13.2±6.0             | 10.0±6.4*      |
| Changes from baseline (pmol/l)        | -3.                       | 4±3.5          | -3                   | .1±3.3         |
| Fasting glucose (mmol/l) <sup>‡</sup> | 7.9±3.1                   | 6.3±1.9*       | 8.0±3.2              | 6.4±2.0*       |
| Changes from baseline (mmol/l)        | -1.6±2.3                  |                | -1.5±3.1             |                |
| HOMA index <sup>‡</sup>               | 4.5±4.5                   | 2.6±2.3*       | 4.7±4.3              | 2.8±2.5*       |
| Changes from baseline (%)             | -1.9±2.2                  |                | $-1.9\pm2.0$         |                |
| HbA <sub>1c</sub> (%) <sup>‡</sup>    | 7.4±1.6                   | 6.8±0.9*       | 7.5±1.9              | 6.9±0.8*       |
| Changes from baseline (%)             | -0.6±0.9                  |                | -0.                  | .6±0.7         |
| RBP4 (µg/ml)⁺                         | 70.2±20.2                 | 54.5±21.1*     | 67.9±22.8            | 49.9±19.6*     |
| Changes from baseline (µg/ml)         | -15.9±5.7 -17.8±6.0       |                | 7.8±6.0              |                |

p < 0.05 compared with baseline. p < 0.05 compared with the Control Group.

# Methods: Isolation of Serum Samples

- Peripheral blood samples (5 mL) were drawn into serum collection tubes
- $\rightarrow$  allowed to stand for about 30 min at RT
- $\rightarrow$  centrifuged at 1,800 g for 10 min at RT.
- → the supernatant (serum) aliquoted into eppendorf tubes and stored at -80°C.

# **RNA Preparation**

- Total RNAs from human serum were isolated by using TRI Reagent BD (MRC, TB126).
- In Brief,
- → 250 µl of serum per eppendorf tube was added to 0.75 ml of TRI Reagent BD
- $\rightarrow$  stored for 5 min at RT.
- $\rightarrow$  the samples were extracted with 200 uL of chloroform
- → the supernatant was isopropanol precipitated by centrifugation for at 12,000 g 15 min 4°C.
- → The pellet was washed in 1 ml of 75% ethanol by centrifugation
- → finally the pellet was re-suspended in 5 µl of RNase-free water.
- → The samples isolated from the same patients were gathered. Total RNA was quantitated by using a spectrophotometer (ND-1000; NanoDrop Technologies, Wilmington, DE).

### Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR, Real-time PCR)

- Total RNAs isolated from the serum were synthesized into single-stranded cDNA by using TaqMan MiRNA reverse transcription kit and miRNA-specific stem-loop primers (Applied BioSystems, Inc.).
- 10 ng of total RNA per 15 µL RT reaction was reverse transcribed using the TaqMan microRNA Reverse Transcription kit (ABI).
- MiR-17, miR-24, miR-92a, miR-126, miR-145 and miR-16 primers were used for RT reaction.
- Subsequently, 2 µL of the RT product was used for detecting miRNA expression by quantitative (q)PCR using TaqMan microRNA Assay kits (ABI) for the corresponding microRNA.
- Real-time PCR was performed using an iQ<sup>™</sup> Cycler (Bio-Rad Laboratories, CA, USA) using the following program: 10 minutes pre-incubation at 95 °C and 40 cycles of 15 seconds of denaturation at 95 °C and 60 seconds of annealing/extending at 60 °C.
- MiR-17, miR-24, miR-92a, miR-126 and miR-145 primers and miR-16 primers as an endogenous control were used. The amount of miRNA not detected after 40 cycles of a realtime PCR was regarded in the present study as a CT equivalent to 40.
- Negative controls were included with every real-time RT-PCR assay, and no amplification of the signal was observed when water was added instead of RNA or cDNA sample.
- The measurement of miRNA expression was assayed in duplicate.

• The Ct Values were normalized to miR-16 and are expressed as 2-(CT[microRNA]CT[miR-16]). Korea University Anam Hospital