Zilver PTX Experiences for Femoropopliteal Artery Disease in Japan

Sendai Kousei Hospital, Tokyo Kamata Hospital, Japan Naoto Inoue M.D. FSCAI, FJCC, FAHA

Speaker's name: Naoto Inoue

I have the following potential conflicts of interest to report:

Research contracts
Consulting- Fukudadensi, Kaneka, Medicon, Japan Life Line
Employment in industry
Stockholder of a healthcare company
Owner of a healthcare company
Other(s)

□ I do not have any potential conflict of interest

High expectations of New SFA DES

- Success in Coronary DES
- Restenosis of SFA BMS
- High rate of restenosis and stent fracture in long and multi stent use

Zilver PTX[®] Japan Post-Market Surveillance Study of Paclitaxel-Eluting Stents for Femoropopliteal Artery Disease: 12-Month Results in Real-World Patients

Naoto Inoue MD, FSCAI, FJCC, FAHA

Sendai Kousei Hospital

Japan On behalf of the Investigators

Zilver PTX Clinical Program

	Randomized Clinical Trial (RCT)	Single-Arm Study (SAS) ¹	Japan Post-Market Surveillance Study (PMS) ¹	
Patients	479	787	907	
Regions	US, Japan, Germany	EU, Korea, Canada	Japan	
	No significant untreate			
	At least one pate			
Key Study Criteria	Maximum 2 Zilver PTX	Maximum 4 Zilver PTX		
	stents per lesion	stents per patient	ALL patients treated with	
	Lesion length ≤ 14 cm		Zilver PTX enrolled (up to enrollment limit), NO	
	One lesion per limb	INO EXClusions		
	No prior stent in SFA	In-stent restenosis	exclusion criteria	
	Excluded if serum creatinine > 2.0, renal failure, or dialysis	No exclusions		
Antiplatelets	Clopidogrel or ticlopidine recommended for 60 days, aspirin indefinitely			
Follow-up	5 years	2 years	5 years	
Patency	Core laboratory analysis	Site analysis		
Stent Integrity	X-ray core laboratory analysis			

Increasingly complex patients and lesions

¹ These studies included patients with lesions > 140 mm in length and previously stented lesions that are outside of the approved indication for use in the US.

Patient Demographics and Comorbidities

	RCT	SAS	Japan PMS
Patients	236	787	907
Age (years)	68 ± 10 *	67 ± 10 *	74 ± 9
Male	66%	73%	70%
Diabetes	50% *	36% *	59%
High cholesterol	76% *	58%	61%
Hypertension	89%	80% *	85%
Pulmonary disease	19% *	9%	8%
Renal disease	10% *	11% *	44% ¹

* *p* < 0.01 compared to Japan PMS

 1 Of patients with renal disease in the Japan PMS, 82% were in renal failure, defined as eGFR < 60 and/or dialysis

Japan PMS patients are older and have a higher prevalence of diabetes and renal disease

Baseline Lesion Characteristics

		RCT		SAS		Japan PMS	
Lesions		247		900		1081	
Lesion length (cm)		6.6 ± 3.9 *		10.0 ± 8.2 *		14.7 ± 9.7	
Diameter stenosis (%)		80 ± 17 *		85 ± 16 *		92 ± 11	
Total occlusions		33% *		38%		42%	
In-stent restenosis (ISR)		0% *		15%*		19%	
	0	0%		0%		7%	
Patent runoff	1	22%	*	19%	*	32%	
vessels	2	35%		35%		32%	
	3	42%		45%		29%	
Rutherford 4-6 (CLI) ¹		9% *		11% *		20%	

* *p* < 0.05 compared to Japan PMS

¹ *p*-value based on all reported Rutherford values (classes 1 through 6)

Japan PMS lesions are more complex (e.g., longer, more ISR, fewer patent runoff vessels, greater incidence of CLI)

Stent Integrity Through 12 Months

- 1066 stents were evaluated by sites in Japan PMS
 - 17 total fractures (1.6%)

	RCT	SAS	Japan PMS
Fracture Rate	0.9%	1.5%	1.6%
Number of Stents Evaluated	470	1889	1066

Low fracture rate; not significantly greater than in pre-market studies despite more complex lesions (e.g., longer, more ISR, fewer patent runoff vessels)

Freedom from TLR

Freedom from TLR is 91.4% through 12 months in the Japan PMS

Freedom from TLR

Freedom from TLR in the Japan PMS is similar to both pre-market studies

Primary Patency by Duplex Ultrasound

Months

Primary patency rate is 84.8% through 12 months in the Japan PMS

Primary Patency by Duplex Ultrasound

Primary patency rate in the Japan PMS is similar to both pre-market studies

Results in RCT-Like and More Complex Lesions

- Classification as an RCT-like lesion required all of
 - $\leq 14 \text{ cm length}$
 - At least 1 patent runoff vessel
 - No in-stent restenosis
- Classification as a more complex lesion required at least one of
 - > 14 cm length
 - 0 patent runoff vessels
 - In-stent restenosis
- There were no significant differences in patient demographics and comorbidities for the RCT-like versus more complex lesion groups

RCT-Like and More Complex Lesions

		Zilver PTX RCT	JPMS RCT-like	JPMS more complex	<i>p</i> -value*	
Lesions		247	378	703		
Lesion length	(cm)	6.6 ± 3.9	7.4 ± 5.0	18.6 ± 9.3	< 0.001	
Diameter stenosis (%)		80 ± 17	89 ± 12	93 ± 9	< 0.001	
Total occlusions		33%	28%	49%	< 0.001	
In-stent restenosis		0%	0%	29%	< 0.001	
Patent runoff vessels	0	0%	0%	10%	< 0.001	
	1	22%	29%	33%		
	2	35%	36%	30%	< 0.001	
	3	42%	34%	27%		

* JPMS RCT-like lesions compared to JPMS more complex lesions

The more complex lesions are longer, have higher incidence of total occlusions and in-stent restenosis, and have fewer patent runoff vessels

Freedom from TLR

Months

Freedom from TLR is excellent in more complex lesions, and as expected, lower than in RCT-like lesions

Primary Patency by Duplex Ultrasound

Primary patency rate is excellent in RCT-like lesions, and as expected, lower in more complex lesions

Conclusions

- Large amount of clinical data for Zilver PTX, ranging from carefully controlled Level I evidence to large, global, real-world experience
- As expected, patient population and lesion characteristics become more challenging in real-world, all-comer studies
- Japan PMS results through 1 year confirm the benefit of the Zilver PTX technology for treating femoropopliteal artery disease
 - Favorable results in both RCT-like and more complex lesions
 - Consistency across studies provides added assurance of the performance of the Zilver PTX drug-eluting stent

The Zilver PTX[®] Randomized Trial of Paclitaxel-Eluting Stents for Femoropopliteal Artery Disease: 5-Year Results

Michael D. Dake, MD Department of Cardiothoracic Surgery Stanford University School of Medicine Stanford, California On behalf of the Investigators

Zilver PTX Study Design

Outline

- Study design and baseline characteristics
- Safety results through 5 years
 - Stent integrity
- Effectiveness results through 5 years

 Zilver PTX vs. standard care
 Provisional Zilver PTX vs. Provisional BMS
- Conclusions

5-year Freedom from TLR Zilver PTX vs. Standard Care

At 5 years, Zilver PTX demonstrates a 48% reduction in reintervention compared to standard care

5-year Primary Patency (PSVR < 2.0)

Years

At 5 years, Zilver PTX demonstrates a 41% reduction in restenosis compared to standard care

5-year Primary Patency (PSVR < 2.0)

5-year Freedom from TLR Provisional Zilver PTX vs. BMS

At 5 years, Zilver PTX demonstrates a 47% reduction in reintervention compared to BMS

5-year Primary Patency (PSVR < 2.0)

Years

At 5 years, Zilver PTX demonstrates a 41% reduction in restenosis compared to BMS

Conclusions for 5-year Zilver PTX RCT

- As the first randomized controlled SFA device trial with 5-year follow-up, these results with the Zilver PTX stent provide important insights regarding long-term outcomes for endovascular treatment
- 5-year data for Zilver PTX versus standard care
 - Greater than 40% reduction in reintervention and restenosis
 - Superior clinical benefit
 - These benefits increase with time results with Zilver PTX continue to diverge from standard care over 5 years with no late catch-up
- 5-year results confirm long-term superiority of Zilver PTX versus bare metal stents

Limitations

1 More more complex lesion in Japan

2 Poor delivery system

3 Stent variation ≤ 10 cm

4 Appropriate DAPT Original recommendation 2 months

Case 3: 70's Female R-3PrePost12 months

JCR 2014

Case-4: 60`s Female R-3,HD

Case 5: 60's Male R-3 Zilver PTX 6x120mm+6x60mm On 24thday Reocclusion

JCR 2014

Angiographic Restenotic Pattern of Zilver PTX N=19

Focal

Diffuse

Reocclusion

Delivery system

No calcification and tortuosity in the iliac artery Moderate sharp angle between bilateral iliac arteries Easy to use cross-over technique

Calcified short lesion

JCR 2014

Delivery system

6.0x120mm Zilver PTX

 Switched from 0.014 GW to 0.035Amplatz Super Stiff wire

2 No resistant during the advancement of stent

③ Could not pull back outer sheath after the partial stent delivery (30mm)

③ Tried to retrieve the whole segment of stent

④ Outer sheath was ruptured

5 Fragmentated stent remained in the SFA

Fragmentation of stent JCR 201

Delivery system

Express LD 7.0/27mm was implanted into the broken stent

Temporary withdrawn from the market Shorten from 120mm to 100mm

My personal conclusion

1 PTA coating reduced restenosis compared to the balloon angioplasty and conventional BMS in RCT and PMS

2 Safety concern regarding the stent delivery system and stent thrombosis

3 Not cost effectiveness (Maximum stent length ≤ 100 mm)

4 Appropriate duration of DAPT is not determined

