Orsiro - Hybrid Drug Eluting Stent Clinical Update

Perth, Western Australia

Fiona Stanley Hospital

Orsiro Hybrid DES with a bioabsorbable polymer

Combination of passive and active components

The hybrid structure:

- Passive PROBIO silicon carbide barrier encapsulates device, eliminating interaction between stent and the surroundings
- Active BIOlute contains bioabsorbable PLLA polymer combined with Limus drug (1.4 µg/mm²)

Passive Coating: PROBIO Semi-Conductive Silicon Carbide Coating

- PROBIO reduces the interaction between tissue/blood with the metallic stent
- In vitro studies show up to a 96% reduction of metal ions

Active Coating: BIOlute Bioabsorbable PLLA and Active Drug

- PLLA was chosen for its biocompatible and controlled drug release
- Metabolizes into CO₂ and H₂O
- Drug dose 1.4 µg/mm² with complete elution in about 100 days
- Elution curve is in-line with other Limus-based stents

excellence for life

The Helical Stent Design

Yields a smooth outer contour during bending and a smooth transition throughout the stent

Progression of strut evolution

Stent profile of crimped stents as a mean value over the entire stent

Benchtest Results: Crossability

Mean proximal forces of crossability tests, stenosis model

Source: Comparative investigation of Coronary Stent Systems, Institute for Implant Technology and Biomaterials. Rostock, Germany 2011.

Benchtest Results: Elastic Recoil

Measured recoil values

Source: Comparative investigation of Coronary Stent Systems, Institute for Implant Technology and Biomaterials. Rostock, Germany 2011.

- DESIGN: Prospective, multicenter, nonrandomized, first-in-man trial
- OBJECTIVE: To assess the safety and clinical performance of the Orsiro in coronary denovo coronary artery lesions
- PRIMARY ENDPOINT: LLL at 9 months
- Clinical coordinate investigator: Prof. Martial Hamon, University Hospital of Caen, France
- PRINCIPAL INVESTIGATORS: Dr. Rodica Niculescu, MD, PhD, FESC, Dr. Dan Deleanu, MD, FESC

BIOFLOW-I Results

Late Lumen Loss (mm)

BIOFLOW-II Study Design

excellence for life

- DESIGN: A prospective, multicenter, international, non-inferiority, randomized controlled study
- OBJECTIVE: To compare the Orsiro to Xience Prime in de-novo coronary lesions
- PRIMARY ENDPOINT: In-stent late lumen loss at 9 months

Co-Pls:

Stephan Windecker

University Hospital Bern, Switzerland Thierry Lefevre

Hospital Jacques Cartier, Massy, France

Cumulative frequency of in-stent late loss at 9 months (mm)

Target Lesion Failure Clinical Outcome at 12 Months

BIOTRONIK

excellence for life

Source: Windecker S. TCT, San Francisco, USA, October 2013. Oral presentation.

Small Vessel Subgroup (RVD ≤ 2.75 mm) Results

¹ Nine-month follow-up

² Twelve-month follow-up

••••

BIOFLOW-II

Diabetic Subgroup Results

¹ Nine-month follow-up

² Twelve-month follow-up

BIOFLOW-III Study Design

DESIGN

International, prospective, nonrandomized, multicenter, open-label clinical evaluation

OBJECTIVE

To assess the clinical performance of the ORSIRO in coronary arteries in an "all comers" population

PRIMARY ENDPOINT

TLF at 12 months

COORDINATING INVESTIGATOR:

Johannes Waltenberger University Hospital Muenster, Germany

Patient Characteristics

Patients	N = 1,356
Age (mean \pm SD)	66 ± 11 yrs
Male % (N)	72% (971)
Age ≥ 75 yrs	25% (335)
Hypertension	76% (1,029)
Hypercholesteremia	60% (815)
Smoking	55% (741)
Diabetes mellitus	30% (403)
Insulin dependent	34% (138)
Non-Insulin dependent	66% (256)
History of MI	28% (376)
Acute MI	33% (442)
Lesion	N = 1,738
Small vessels (≤2.75mm)	48% (828)*
Chronic Total Occlusion	4% (65)
	*Related to 1,724 lesions

ACC/AHA Lesion Classification

Primary Endpoint Target Lesion Failure (TLF) up to 12 months

Secondary endpoints

Device and procedure success

Devices	N = 1,738
Device success	98.7%
Procedures	N = 1,356
Procedure success	98.2%

Device Success: Successful delivery/deployment, withdrawal of the delivery system with attainment of a final residual stenosis of less than 50% by visual estimation.

Procedure Success: Device Success without the occurrence of ID-MACE during hospital stay to 7 days post index procedure.

12 months

*According to ARC definition: Includes definite and probable stent thrombosis

Patients N = 1,355*	Diabetics N = 403	Non- diabetics N = 952	P-value	1!
Age (mean yrs 土 SD yrs)	68.6 ± 10	65.1 ± 11	< 0.0001	10
Hypertension	87% (352)	71% (677)	< 0.0001	- ,
Hypercholesteremia	64% (256)	59% (559)	0.0986	
Insulin dependent	34% (138)	0% (0)	n/a	-
Non-Insulin dependent	66% (265)	0% (0)	n/a	_

Lesions N = 1,738	Diabetics N = 519	Non- diabetics N = 1,218	P-value
B2/C type lesions	49% (255)	53% (649)	0.1129
Stents N = 1,842	N = 597	N = 1,375	
Mean stent length (mm)	18.1 ± 5.7	18.2 ± 5.8	0.9777
Mean stent diameter (mm)	3.0 ± 0.4	3.0 ± 0.4	0.4503

	Diabetics	Non- diabetics
Device success	99.0%	98.6%
Procedure success	98.0%	98.2%

* Unknown diabetic status N=1

Patients N= 1,341 [*]	≤ 2.75mm ^{**} N = 575	>2.75mm N = 766	P-value	15%
Age (mean yrs \pm SD yrs)	67.2 ± 11	65.3 ± 11	0.0012	10%
Hypertension	79% (454)	74% (567)	0.0359	_
Hypercholesteremia	61% (351)	59% (454)	0.5115	5%
Diabetes	33% (188)	28% (211)	0.0412	_
Non-Insulin dependent	60% (113)	71% (149)	0 0 7 7 7	- 0%
Insulin dependent	40% (75)	30% (62)	0.0273	_

Lesions N = 1,724	≤ 2.75mm N = 828	>2.75mm N = 896	P-value
B2/C type lesions	50% (413)	55% (490)	0.0458
Stents N = 1,957	N = 931	N = 1,026	
Mean stent length (mm SD)	17.7 ± 5.7	18.5 ± 5.9	0.0011
Mean stent diameter (mm)	2.7 ± 0.3	3.2 ± 0.4	< 0.0001

	Small Vessels	Non- small Vessels
Device success	99.3%	98.2%
Procedure success	98.3%	98.0%

*Unknown Vessel diameter N=15

**Reference vessel diameter (RVD) ≤2.75mm

Complex lesion subgroup analysis

Patients N= 1.356 [*]	B2/C N = 743	A/B1 N = 611	P-value
Age (mean yrs \pm SD yrs)	66.3 ± 10.8	66.0 ± 10.7	0.6256
Hypertension	76% (561)	76% (466)	0.7769
Hypercholesteremia	61% (454)	59% (359)	0.3477
Diabetes	28% (207)	32% (195)	0.1076
Insulin dependent	35% (72)	33% (65)	
Non-Insulin dependent	65% (135)	67% (130)	0.7593
Lesions N = 1,289	B2/C N = 705	A/B1 N = 584	P-value
Lesion Length (mm)	17.6 ± 10.4	13.1 ± 5.8	<0.0001
RVD (mm)	3.0 ± 0.4	3.0 ± 0.4	0.0070
Diameter stenosis (%)	87.6 ± 11.3	84.4 ± 10.6	<0.0001
Calcification - Moderate	26.0	20.7	0.0102
Calcification – Severe (%)	10.7	2.0	<0.0001
Bifurcation (%)	19.8	11.1	<0.0001
СТО (%)	6.0	1.2	<0.0001
Tortuosity – Excessive (%)	4.1	0.8	<0.0001

12-Month Results

	B2/C	A/B1
Device success	99.3	99.7
Procedure success	98.2	99.2

* Two subjects with unknown lesion type not included in analysis

Patients N = 1,356	Acute MI N = 442	Others N = 914	P-value	15%
Age (mean yrs \pm SD yrs)	64.9 土 12	66.7 ± 10	0.0033	10%
Hypertension	66% (293)	81% (736)	< 0.0001	- 10/0
Hypercholesteremia	50% (222)	65% (593)	< 0.0001	- 5%
Diabetes	26% (115)	32% (288)	0.0381	
Non-Insulin dependent	61% (70)	68% (195)	0 1014	0%
Insulin dependent	39% (45)	32% (93)	- 0.1914	_

Lesions N = 1,738	Acute MI N = 519	Others N = 1,218	P-value
B2/C type lesions	58% (318)	50% (587)	0.0013
Stents N = 1,973	N = 614	N = 1,359	
Mean stent length (mm)	18.0 ± 5.7	18.2 ± 5.8	0.5785
Mean stent diameter (mm)	3.0 ± 0.4	2.9 ± 0.4	0.0014

12-Month Results

	Acute MI	Others
Device success	98.2%	99.0%
Procedure success	97.1%	98.7%

CTO subgroup analysis

Patients N= 1,265*	CTO N = 58	Non-CTO N = 1,207	P-value	15% -
Age (mean yrs \pm SD yrs)	64.7 ± 10	66.1 ± 11	0.3212	- 400/
Hypertension	81% (47)	76% (919)	0.3914	- 10% -
Hypercholesteremia	60% (35)	60% (722)	0.9362	5% -
Diabetes	28% (16)	29% (346)	0.8589	-
Non-Insulin dependent	63% (10)	67% (230)	0 7422	- 0% -
Insulin dependent	38% (6)	34% (116)	0.7423	_

	СТО	Non-CTO	
Lesions N = 1,613	N = 83	N = 1,530	P-value
B2/C type lesions	81% (67)	51% (785)	< 0.0001
Stents N = 1,842	N = 120	N = 1,722	
Mean stent length (mm)	20.4 ± 6.6	18.0 ± 5.7	< 0.0001
Mean stent diameter (mm)	2.9 ± 0.4	3.0 ± 0.4	0.0043

12-Month Results

	СТО	Non-CTO
Device success	100.0%	98.6%
Procedure success	100.0%	97.9%

*Unknown CTO status N=91

BIOSCIENCE Trial

Randomised comparison of a novel, ultrathin strut biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent for percutaneous coronary revascularization

NCT01443104

- <u>Thomas Pilgrim, MD</u>; Dik Heg, PhD; Marco Roffi, MD; David Tüller, MD;
- Olivier Muller, MD; André Vuilliomenet, MD; Stéphane Cook, MD;
- Daniel Weilenmann, MD; Christoph Kaiser, MD; Peiman Jamshidi, MD;
- Bernhard Meier, MD; Peter Jüni, MD; Stephan Windecker, MD
- Department of Cardiology, Swiss Cardiovascular Center, University Hospital, Bern; Institute of Social and Preventive Medicine and Clinical Trials Unit
- Bern University Hospital, Switzerland1

OBJECTIVE

 To compare the safety and efficacy of a novel, ultrathin strut, biodegradable polymer based sirolimus-eluting stent with a thin strut, durable polymer everolimus-eluting stent for percutaneous coronary revascularization.

TRIAL DESIGN

Clinical follow-up at 30 days and 12 months

PRIMARY ENDPOINT

Composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularization at 12 months

SECONDARY ENDPOINTS

Death, cardiac death, myocardial infarction, TLR, TVR, definite ST, definite and probable ST, target vessel failure

ELIGIBILITY FOR PATIENT ENROLLMENT

	Inclusion criteria		Exclusion criteria
•	Age ≥ 18 years	•	Pregnancy
•	Coronary artery disease - stable CAD, silent ischemia	•	Planned surgery within 6 months of PCI
	UA, NSTEMI, and STEMI	•	Intolerance to aspirin, clopidogrel, heparin, sirolimus, everolimus,
•	At least one lesion with diameter		contrast material
	artery or a bypass graft - no. of vessels: no limitation	•	Inability to provide informed consent
	 no. of lesions: no limitation lesion length: no limitation 	•	Participation in another trial

PATIENT RECRUITMENT

February 2012 to May 2013

BASELINE CHARACTERISTICS	BP SES (n=1,063)	DP EES (n=1,056)
Age (years) — mean ± SD	66.1 ± 11.6	65.9 ± 11.4
Male gender — n (%)	818 (77%)	816 (77%)
Diabetes mellitus — n (%)	257 (24%)	229 (22%)
Hypertension — n (%)	728 (69%)	706 (67%)
Hypercholesterolemia — n (%)	712 (67%)	716 (68%)
Previous PCI — n (%)	325 (31%)	292 (28%)
Previous CABG — n (%)	113 (11%)	98 (9%)
Renal Failure (GFR<60 ml/min) — n (%)	151 (15%)	130 (13%)
Left ventricular ejection fraction (%) — mean ± SD	55.7 ± 12.1	55.9 ± 12.6
Indication — n (%)		
Unstable angina	78 (7%)	74 (7%)
Non ST-segment elevation MI	288 (27%)	284 (27%)
ST-segment elevation MI	211 (20%)	196 (19%)
Stable angina	325 (31%)	332 (31%)
Silent ischemia	161 (15%)	171 (16%)

ANGIOGRAPHIC CHARACTERISTICS

BP SES (n=1,594) DP EES (n=1,545)

	Target-vessel	location	per	lesion —	n	(%
--	----------------------	----------	-----	----------	---	----

Left main artery	29 (2%)	27 (2%)
Left anterior descending artery	649 (41%)	679 (44%)
Left circumflex artery	370 (23%)	341 (22%)
Right coronary artery	505 (32%)	452 (29%)
Saphenous vein graft	38 (2%)	40 (3%)
Arterial graft	3 (0.2%)	6 (0.4%)
Number of treated lesions per patient — mean ± SD	1.50 ± 0.79	1.46 ± 0.73
Number of stents per lesion — mean ± SD	1.31 ± 0.61	1.34 ± 0.64
Total stent length per lesion (mm) — mean ± SD	25.91 ± 15.40	27.45 ± 16.77
Maximum stent diameter per lesion (mm) — mean ± SD	3.05 ± 0.49	3.03 ± 0.49
Off-label stent use per lesion — n (%)	690 (46%)	735 (50%)
Long lesion per lesion (>20 mm) — n (%)	826 (54%)	839 (57%)
Small-vessel per lesion (<2.75 mm) — n (%)	439 (29%)	468 (32%)

PRIMARY ENDPOINT

TARGET LESION FAILURE

STENT THROMBOSIS

DEFINITE STENT THROMBOSIS

STRATIFIED ANALYSIS OF PRIMARY ENDPOINT

	BP SES	DP EES	RR (95% CI)		р	p interaction
Diabetes						0.41
Yes	27/257	21/229	1.19 (0.67-2.10)		0.56	
No	42/806	49/827	0.88 (0.58-1.33)		0.55	
Acute Coronary Syn	drome					0.24
Yes	32/577	38/554	0.81 (0.51-1.30)		0.39	
No	37/486	32/502	1.21 (0.75-1.95)	-	0.43	
ST-elevation MI						0.014
Yes	7/211	17/196	0.38 (0.16-0.91)	—	0.024	
No	62/852	53/860	1.20 (0.83-1.73)		0.33	
Off-label use						0.35
Yes	43/629	51/646	0.87 (0.58-1.31)		0.50	
No	24/427	19/407	1.23 (0.67-2.24)		0.51	
Sex						0.104
Female	12/245	20/240	0.59 (0.29-1.21)		0.15	
Male	57/818	50/816	1.15 (0.79-1.68)		0.47	
Renal failure						0.44
Yes	18/151	18/130	0.88 (0.45-1.70)		0.70	
No	50/857	43/865	1.19 (0.79-1.79)		0.40	
			Favours BP SES	0.25 0.5 1 2	⁴ Favours DP	EES
54					BIO excelle	TRONIK

LIMITATIONS

- Missing information on patients assessed for eligibility, but not included into the trial.
- The trial was powered for the primary composite outcome but not individual components.
- The primary endpoint results were determined at 12 months precluding conclusions regarding the long-term safety and efficacy.
- One third of patients had undergone previous PCI and some adverse events may have been related to previously implanted devices.

META-ANALYSIS OF BIOSCIENCE AND BIOFLOW II

	BP SES	DP EES		Risk ratio (95% CI)
Target lesion failure				
Bioflow-II	19/298	12/154	- 	0.82 (0.41-1.64)
Bioscience	69/1,063	70/1,056		0.98 (0.71-1.35)
Overall			\diamond	0.95 (0.71-1.27)
Cardiac death				
Bioflow-II	2/298	1/154		1.03 (0.09-11.31)
Bioscience	20/1,063	22/1,056		0.90 (0.50-1.64)
Overall			\diamond	0.91 (0.51-1.63)
Target vessel myocar	dial infarction			
Bioflow-II	8/298	4/154		1.03 (0.32-3.38)
Bioscience	30/1,063	31/1,056		0.96 (0.59-1.58)
Overall			\diamond	0.97 (0.62-1.53)
Target lesion revascu	llarisation			
Bioflow-II	10/298	7/154		0.74 (0.29-1.90)
Bioscience	35/1,063	23/1,056		1.51 (0.90-2.54)
Overall				1.18 (0.61-2.30)
			I I I I 0.25 0.5 1 2 4 Risk ratio (95% CI)	
56		•	Favours BP SES Favours DP	EES BIOTRONIK

CONCLUSIONS

- Ultrathin strut biodegradable polymer sirolimuseluting stents were non-inferior to durable polymer everolimus-eluting stents for the primary endpoint target lesion failure at 1 year in a population with minimal exclusion criteria.
- The observed benefit in the subgroup of patients with ST-segment elevation myocardial infarction warrants confirmation in appropriately designed studies.

Ultrathin strut biodegradable polymer sirolimus-eluting stent versus durable polymer everolimus-eluting stent for percutaneous coronary revascularisation (BIOSCIENCE): a randomised, single-blind, non-inferiority trial

Thomas Pilgrim^{*}, Dik Heg^{*}, Marco Roffi, David Tüller, Olivier Muller, André Vuilliomenet, Stéphane Cook, Daniel Weilenmann, Christoph Kaiser, Peiman Jamshidi, Therese Fahrni, Aris Moschovitis, Stéphane Noble, Franz R Eberli, Peter Wenaweser, Peter Jüni, Stephan Windecker

Summary

Background Refinements in stent design affecting strut thickness, surface polymer, and drug release have improved clinical outcomes of drug-eluting stents. We aimed to compare the safety and efficacy of a novel, ultrathin strut cobalt-chromium stent releasing sirolimus from a biodegradable polymer with a thin strut durable polymer everolimus-eluting stent.

Methods We did a randomised, single-blind, non-inferiority trial with minimum exclusion criteria at nine hospitals in Switzerland. We randomly assigned (1:1) patients aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes undergoing percutaneous coronary intervention to treatment with biodegradable polymer sirolimus-eluting stents or durable polymer everolimus-eluting stents. Randomisation was via a central web-based system and stratified by centre and presence of ST segment elevation myocardial infarction. Patients and outcome assessors were masked to treatment allocation, but treating physicians were not. The primary endpoint, target lesion failure, was a composite of cardiac death, target vessel myocardial infarction, and clinically-indicated target lesion revascularisation at 12 months. A margin of 3.5% was defined for non-inferiority of the biodegradable polymer sirolimus-eluting stent compared with the durable polymer everolimus-eluting stent. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT01443104.

Published Online September 1, 2014 http://dx.doi.org/10.1016/ S0140-6736(14)61038-2

See Online/Comment http://dx.doi.org/10.1016/PII

*TP and DH contributed equally

Department of Cardiology, Swiss Cardiovascular Center, University Hospital, Bern, Switzerland (T Pilgrim MD, T Fahrni RN, A Moschovitis MD, Prof P Wenaweser MD, Prof S Windecker MD); Department of Cardiology, University Hospital, Geneva, Switzerland (Prof M Roffi MD,

ent of

The Lancet, published online September 1, 2014

Orsiro clinical program

	Study	Study design	N	Primary endpoint	Status
σ	BIOFLOW-I	FIM	30	9-mo LLL	Study completed
	BIOFLOW-INDIA	Indian single-armed trial	120	9-mo LLL	Study completed
hitiate	BIOFLOW-III	International registry	1000	12-mo TLF	Study completed
ONIK ir	BIOFLOW-II	International, RCT vs. Xience Prime	440	9-mo LLL	Primary endpoint reached
DTR(BIOFLOW-III	Satellite registries	>3,000	12-mo TLF	Enrolling
BIC	BIOFLOW-IV	Japanese approval study, international RCT	555	12-mo TLF	Enrolling
	BIOLUX RCT	RCT vs. Pantera Lux in ISR	210	6-mo LLL	Enrolling
ted	HAT-TRICK-OCT	RCT vs. Integrity	40	3-mo strut coverage	Study completed
	ORSIRO OCT	RCT vs. Xience Prime	60	6- & 24-mo strut coverage	Enrollment completed
initia	BIOSCIENCE	RCT vs. Xience Prime	2,100	12-mo TLF	Enrollment completed
nvestigator	SORT OUT VII	RCT vs. Nobori	2,314	12-mo TLF	Enrollment completed
	PRISON-IV	International, RCT vs. Xience Prime	330	9-mo LLL	Enrolling
	BIO-RESORT	RCT vs. Synergy & Integrity	3,530	12-mo TVF	Enrolling
	ORIENT	RCT vs. Integrity	345	9-mo LLL	Enrolling

Personal Experience

- Currently commercially available in Australia.
 Long lengths available up to 40mm.
- Rapidly becoming DES of choice due to deliverability, ease of use and emerging efficacy and safety data
- My first experience Live case in Vietnam.
 Diffuse, tortuous and calcified LAD. 3.0 x 26mm stent had no difficulty delivering to mid LAD.
- Recruited first patient for Bioflow IV trial this week.

