

Polymer-Free Stent

CX - ISAR

Moo Hyun Kim, MD, FACC

on behalf of

Dr. Florian Krackhardt, Germany

CX – ISAR Stent : Features

Intracoronary Stenting and Angiographic Results

Best Stent Performance through ultra-low strut thickness with Cobalt Chromium

Traumatization of the vascular wall

Intracoronary Stenting and Angiographic Results Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial

Adnan Kastrati, MD; Julinda Mehilli, MD; Josef Dirschinger, MD; Franz Dotzer, MD; Helmut Schühlen, MD; Franz-Josef Neumann, MD; Martin Fleckenstein, MD; Conrad Pfafferott, MD; Melchior Seyfarth, MD; Albert Schömig, MD

From the Deutsches Herzzentrum, Munich, Germany.

Correspondence to Dr Adnan Kastrati, Deutsches Herzzentrum, Lazarettstraße 36, 80636 München, Germany. E-mail kastrati@dhm.mhn.de

Clinical Evaluation with Stent Platform

Clinical superiority of Thin Strut Stents

Study	Restenosis with 50 µm strut thickness	Restenosis with common strut thickness	p-value	Number of patients
ISAR Stereo I*	15 %	26 %	0.01	651
ISAR Stereo II**	18 %	31 %	0.001	611

Polymer-Free Matrix

Microporous Stent Surface Modification

Abluminal Coating on Surface

Improved healing, More targeted tissue release, Less systemic exposure

Stent Platform By Products

Durable Polymer Coated Stents			Bioabsorbable Polyme r Coated Stents		Bio-absorb able Scaffo Id	Polymer- Free Coated Stent	
Xience Prime™	Xience Xpedition™	Resolute Integrity™	PROMUS Element [™]	Orsiro™	BioMatrix Flex [™]	Absorb BVS	ISAR
Strut Thickness (nominal and measured)							
81 μm (0.0032")	81 μm (0.0032")	89 μm (0.0035")	81 μm (0.0032")	60/80 μm (0.0024/ 0.0031")	120 μm (0.0047")	150 μm (0.0059")	50/60 μm (0.0020"/ 0.0024")
Coating Thickness (nominal and measured)							
Conformal 8µm / side 4 - 10 µm	Conformal 7.8µm/ side 4 - 10 µm	Conformal 6µm / side 5 - 38 µm	Conformal 8µm	Asymetr. 7μm 7 - 9 μm	Abluminal 10µm 10 - 25µm	Conformal 3µm	Abluminal 4 μm
Content (nominal)							
Everolimus 100 µg/cm²	Everolimus 88 µg/cm²	Zotarolimus 160 µg/cm²	Everolimus 100 µg/cm²	Sirolimus 140 µg/cm²	Biolimus A9 15.6 µg/mm²	Everolimus 98 µg/cm²	Sirolimus 120 µg/cm²

Source: R&D, internal tests

ISAR Trackability

Trackability (track length passed by 3.0 x 18/19 mm)

Drug Coating

Sirolimus - Established anti-inflammatory and anti-proliferative agent

Matrix Coating Technology

Probucol is a potent

- 1. Antioxidant
- 2. Highly Lipophilic
- 3. <u>Release kinetics of sirolimus</u>

Limitations of Polymer

Limitations of polymer use and metallic backbones in current DES

ischer, T. F. et al. Circulation 2007;115:1051-1058

- Stent thrombosis (late, very late) / Forced prolonged DAT duration / Bleeding / Resistance
- Delayed endothelialization
- Inflammation / Hypersensitivity
- Aneurysms
- Late catch-up
- Polymer disruption
- Remodeling (constrictive / expansive)
- Functional integrity

Polymer-Free Matrix Coating Technology

- The Coroflex ISAR stent is covered with a Sirolimus containing matrix, which consists in equal shares (1:1) of the drug Sirolimus (active agent) and Probucol (excipient matrix builder)
- Probucol is used as an hydrophobic, antioxidantic excipient. The release of Sirolimus is controlled by the Probucol. Probucol is needed to bind the drug on the stent and to facilitate a controlled & continuous drug release.
- Probucol mimics the function of a polymer by retarding the release of Sirolimus over a time period of several weeks
- The drug load is 1.2µg/mm² Sirolimus
- The Matrix Coating is applied only on the abluminal Coroflex ISAR stent surface for improved endothelial healing

Coroflex® ISAR Abluminal, Polymer-Free Drug Delivery

Matrix Coating Technology

Drug Release Kinetics

depends on the 'sirolimus:probucol ratio' in the coating of CX ISAR

The 50:50 ratio <u>corresponds to the drug release</u> of the Cypher stent without using a non-degradable polymer!

Matrix Coating Technology

CX-ISAR Drug Matrix is <u>>80%</u> released & bio-resorbed after <u>30 days</u> The release has been completed at <u>90 days</u>.

Klugherz BD, Llanos G, Lieuallen W, et al; Twenty-eight-day efficacy and phamacokinetics of the sirolimus-eluting stent. Coron Artery Dis. 2002 May;13(3):183-8

Technical Data

Technical Data			
Coating technology	Abluminal, polymer-free coating		
Proximal shaft	1.9 F		
Distal shaft	2.5 F		
Usable length	145 cm		
Stent strut thickness	Ø 2.00 - 2.5 mm 50 μm 'Ultra' stent architecture Ø 2.75 - 4.0 mm 60 μm 'Neo' stent architecture		
Stent length	Ø 2.00 - 2.5 mm: 9/14/16 - 32 mm 'Ultra' stent architecture Ø 2.75 - 4.0 mm: 8/13/16 - 32 mm 'Neo' stent architecture		
Guiding catheter compatibility	5 F / "kissing balloon": 6 F		
Guide wire compatibility	0.014" (0.36 mm)		
Nominal Pressure (NP) Rated Burst Pressure (RBP)	10 atm 18 atm (Ø 4.0 mm 15 atm)		
Crossing profile	0.031" - 0.037" (0.79 mm - 0.93 mm)		
Lesion entry profile	0.016" (0.41 mm)		

Polymer-Free Sirolimus- and Probucol-Eluting Versus New Generation Zotarolimus-Eluting Stents in Coronary Artery Disease : Test Efficacy of Sirolimus- and Probucol-Eluting Versus Zotarolimus-Eluting Stents (ISAR-TEST 5) Trial

J. Mehilli, MD

A. Kastrati, R.A. Byrne, S. Massberg, K. Tiroch, S. Schulz, J. Pache, M. Fusaro, K-L. Laugwitz, A. Schömig

Deutsches Herzzentrum & 1. Med. Klinik rechts der Isar Technische Universität Munich Germany

COLUMBIA UNIVERSITY MEDICAL CENTER

Background

In comparison with BMS, DES are associated with a small excess of late events occurring more than one year after intervention

The pathological substrate underlying these events is delayed arterial healing and inflammatory response to DES permanent polymer coatings

Inclusion criteria

Patients with ischemic symptoms or evidence of myocardial ischemia in the presence of ≥50 % *de novo* stenosis located in native coronary arteries Informed, written consent

Exclusion criteria

Age < 18 years Cardiogenic shock Target lesion located in the left main stem Target lesion located in the bypass graft Malignancies with life expectancy <1 year Allergies to study medication

Primary Endpoint

Composite of cardiac death, target vessel-related myocardial infarction target lesion revascularization at 1-year post index PCI

Secondary Endpoints

- All cause mortality
- Incidence of definite/probable stent thrombosis at 1-year post index PCI
- In-segment binary restenosis
- In-stent late luminal loss

at follow-up angiography

IMBIA UNIVERSITY

c-Presbyterian

Sample Size Calculation

Hypothesis:

Rapamycin/Probucol-eluting stent (Dual-DES) is not inferior to zotarolimus-eluting stent (Endeavor Resolute) in terms of device-oriented major adverse cardiac events

Assumptions:

Incidence of primary endpoint in both groups 10% Margin of non-inferiority 3% Power of 80% One-sided α-level of 0.05 Random sequence 2:1 Needed total # of patients: 3000

(accounting for possible losses at follow-up)

NewYork-Presbyterian The University Hospital of Columbia and Correll

ISAR-TEST-5

Intracoronary Stenting and Angiographic Results: Test Efficacy of Rapamycis/Probucol- and Zotarolimus-Eluting STents - 5

Follow-Up Protocol

600 mg Clopidogrel <mark>PCI</mark> ASS 500 mg

NewYork-Presbyterian
The University Hospital of Columbia and Correll

Baseline clinical characteristics

	1	 1	
· ·····		4	1
	111		E.
	an)	A la	

	Dual-DES n=2002	ZES n=1000
Age, years	67.7±11.2	68.1±10.8
Female, %	24	24
Art. hypertension, %	67	67
Diabetes, %	29	30
Current smoker, %	18	17
Prior bypass surgery, %	9	10
Prior MI, %	29	30
Hyperlipidemia, %	63	65

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian The University respirated Columbia and Correll

Baseline clinical characteristics

	Dual-DES n=2002	ZES n=1000
Clinical presentation, %		
acute MI	11	10
unstable angina	30	33
stable angina	59	57
Multivessel disease, %	<mark>82</mark>	86
Multilesion PCI, %	36	38
LV ejection fraction, %	52.6 ±11.9	52.4 ±11.4

COLUMBIA UNIVERSITY MEDICAL CENTER NewYork-Presbyterian The University respirated Columbia and Correll

TCT2010

Angiographic characteristics

	Dual-DES n=2912	ZES n=1479
Target vessel, %		
left anterior descending	45	45
left circumflex	24	26
right coronary artery	31	29
Bifurcation, %	27	29
Complex morphology, %	74	74
Lesion length, mm	16.4±9.6	16.9±10.0
Vessel size, mm	2.78 ±0.50	2.80 ±0.50

TCT2010

Stent Thrombosis at 1 Year

Target Lesion Revascularization

Cardiac Death/TV-related MI/TLR

Angiographic Restenosis

TCT2010

In-stent late lumen loss In-segment binary restenosis

Out to 12 months Sirolimus and Probucol-Eluting stent is **non-inferior** to the permanent polymerbased zotarolimus-eluting stent in a large-scale study powered for clinical endpoints.

Their performance was comparable with regard to hard clinical endpoints – stent thrombosis, death or MI – as well as clinical and angiographic parameters of restenosis.

