CTO Intervention Related Complications : How to Avoid? How to Overcome?

Seung-Woon Rha, MD, PhD, FACC, FAHA, FSCAI, FESC, FAPSIC

Div of Cardiovascular Intervention and Research Cardiovascular Center, Korea University Guro Hospital, Seoul, Korea

JCR 2014 meeting

Dec 13, 2014

Contents

- 1. Introduction
- 2. CTO complications-Western data
- 3. CTO complications-KUGH (Korea University Guro Hospital) data
- 4. Prevention and Management of CTO PCI Complications
- 5. Representative Korean cases related to CTO PCI

CTO PCI still have limitations

- 1. Successful PCI for CTO has been associated with symptom improvement of angina, left ventricular function, and also survival. JAm Coll Cardiol Inty 2009;2:479-86.
- 2. However, despite of these benefit, CTO intervention is not frequently being performed due to higher chance of technical difficulties, more elaboration for procedural success, relatively lower procedural success than usual cases, more consumption of expensive devices, and finally, <u>the potential for peri-procedural complications.</u>

Complications from the Recently Published Western CTO data

Temporal trends in CTO complication rates

J Am Coll Cardiol Intv 2013;6:128-36.

Pooled Complication Rates

J Am Coll Cardiol Intv 2013;6:128-36.

Incidence of procedural complications in Successful vs. Unsuccessful CTO PCI

Outcomes, N (%)	Successful	Unsuccessful	P-value
MACE	84 (3.7)	14 (4.3)	0.68
Death	19 (0.4)	17 (1.5)	<0.0001
Emergent CABG	1 (0.03)	1 (0.17)	0.74
Stroke	3 (0.07)	4 (0.4)	0.04
Myocardial infarction	106 (2.8)	25 (3.0)	0.87
Coronary perforation, per lesion	67 (3.7)	55 (10.7)	<0.0001
Tamponade	0 (0)	7 (1.7)	<0.0001
Vascular complication	33 (1.7)	6 (0.9)	0.20
Contrast nephropathy	18 (5.0)	5 (4.6)	0.86

J Am Coll Cardiol Intv 2013;6:128-36.

CTO Complication Data from a Korean CTO Registry (Korea University Guro Hospital CTO Registry)

Procedure-related complications from KUGH (Korea Univ Guro Hospital) CTO registry

$V_{\text{orighton}} N (\theta)$	Total	Complications	None	D volue
variables, N (%)	(n=293)	(n=91)	(n=202)	P-value
Arrhythmia	6 (2.0)	6 (6.5)	0 (0.0)	0.003
Acute thrombosis	1 (0.3)	1 (1.0)	0 (0.0)	0.311
Rupture/Perforation	11 (3.7)	11 (12.0)	0 (0.0)	< 0.001
Spontaneously stopped.	3 (1.0)	3 (3.2)	0 (0.0)	
Graft stenting	3 (1.0)	3 (3.2)	0 (0.0)	
Balloon occlusion	5 (1.7)	5 (5.4)	0 (0.0)	
Coil	1 (0.3)	1 (1.0)	0 (0.0)	
Dissection	53 (18.0)	53 (58.2)	0 (0.0)	< 0.001
Stenting	26 (8.8)	26 (28.5)	0 (0.0)	
Stenting failure	1 (0.3)	1 (1.0)	0 (0.0)	
No reflow	9 (3.0)	10 (10.9)	0 (0.0)	< 0.001
Spasm	3 (1.0)	3 (3.2)	0 (0.0)	0.029
Access site hematoma	12 (4.0)	12 (13.2)	0 (0.0)	< 0.001
Any hematoma (<4cm)	8 (2.7)	8 (8.8)	0 (0.0)	< 0.001
Major hematoma (≥4cm)	4 (1.4)	4 (4.4)	0 (0.0)	0.009
Transfusion	3 (1.0)	3 (3.2)	0 (0.0)	0.029
Intraabdominal hematoma*				
Congestive heart failure	4 (1.3)	4 (4.3)	0 (0.0)	0.009
Acute renal failure	2 (0.6)	2 (2.1)	0 (0.0)	0.096
Cerebrovascular accident	2 (0.6)	2 (2.1)	0 (0.0)	0.096
Periprocedural MI	18/182 (9.8)	18/56 (32.1)	0/182 (0.0)	< 0.001

In-hospital clinical outcomes from KUGH CTO registry

Variables, N (%)	Total (n=293)	Complications (n=91)	None (n=202)	P-value
Mortality	5 (1.7)	5 (5.4)	0 (0.0)	0.003
Cardiac death	3 (1.0)	3 (3.2)	0 (0.0)	0.029
Non cardiac death	2 (0.6)	2 (2.1)	0 (0.0)	0.096
Myocardial infarction	4 (1.3)	4 (4.3)	0 (0.0)	0.009
Q-MI	4 (1.3)	4 (4.3)	0 (0.0)	0.009
Revascularization*	1 (0.3)	1 (1.0)	0 (0.0)	0.311
TLR	1 (0.3)	1 (1.0)	0 (0.0)	0.311
TVR	1 (0.3)	1 (1.0)	0 (0.0)	0.311
All MACE**	6 (2.0)	6 (6.5)	0 (0.0)	0.001
TLR MACE	4 (1.3)	4 (4.3)	0 (0.0)	0.009
TVR MACE	6 (2.0)	6 (6.5)	0 (0.0)	0.001

Cumulative clinical outcomes at 2 years from KUGH CTO Registry

Variables, N (%)	Total (n=293)	Complications (n=91)	None (n=202)	P-value
Mortality	16 (5.4)	12 (13.1)	4 (1.9)	< 0.001
Cardiac death	6 (2.0)	5 (5.4)	1 (0.4)	0.012
Non cardiac death	10 (3.4)	7 (7.6)	3 (1.4)	0.012
Myocardial infarction	7 (2.3)	5 (5.4)	2 (0.9)	0.032
Q-MI	6 (2.0)	4 (4.3)	2 (0.9)	0.077
Non Q-MI	1 (0.3)	1 (1.0)	0 (0.0)	0.311
Revascularization	39 (13.3)	8 (8.7)	31 (15.3)	0.126
TLR	28 (9.5)	7 (7.6)	21 (10.3)	0.466
TVR	33 (11.2)	8 (8.7)	25 (12.3)	0.369
Non TVR	5 (1.7)	0 (0.0)	5 (2.4)	0.329
All MACE	54 (18.4)	19 (20.8)	35 (17.3)	0.468
TLR MACE	35 (11.9)	12 (13.1)	23 (11.3)	0.660
TVR MACE	50 (17.0)	19 (20.8)	31 (15.3)	0.244
Stents thrombosis	2 (0.6)	2 (2.1)	0 (0.0)	0.096
Acute	1 (0.3)	1 (1.0)	0 (0.0)	0.525
Subacute	1 (0.3)	0 (0.0)	1 (0.4)	0.263

Independent Predictors of Mortality at 2-year

Variables, n (%)	HR (95% C.I)	P-value
Perforation / Rupture	1.69 (0.15 - 18.3)	0.666
Dissection	1.57 (0.43 - 5.70)	0.492
Acute thrombosis	-	-
Access site complications		
Any hematoma	3.69 (0.40 - 33.4)	0.244
Major hematoma	8.67 (0.81 - 92.2)	0.073
Acute heart failure	7.36 (0.61 - 87.9)	0.115
Acute renal failure	23.4 (1.30 - 420.)	0.032
Cerebrovascular accidents	-	-

Kaplan-Meyer Survival Curve; Cx vs. No Cx

Korean Cardiovascular Complication Club (K-CCC, 2013.5-2014.12)

K-CCC with HKSTENT/CICF 2014

K-CCC and CICF leaders at HKSTENT-CICF 2014

Mar 16, 2014

Prevention and Management of CTO related Complications

KUGH prevention and management protocol for CTO PCI Complications (1)

Complications	Prevention	Management
Coronary Perforation/ Tamponade	Careful wire selection and manipulation Adequate device size (balloon, stent) Cautions; calcified, angulated, tortuous vessel, hydrophilic wires, atheroablative devices	 Balloon tamponade Graftstent Coils, gelform, fat Tamponade; Pericardiocentesis Emergent surgery
Contrast nephropathy	Hydration Minimizing contrast amount, Premedications (Controversy)	Hydration Temporary hemodialysis
Major vascular and bleeding complications	 Avoid too large caliber sheaths and limit the number of vascular access Optimize the antithrombotics and antiplatelets Female vs. Male; Female is more risky 	 Reducing bleeding tendency by medications/hydration Adequate closure devices and compression Surgery

KUGH prevention and management protocol for CTO PCI Complications (2)

Complications	Prevention	Management
Aorto-ostial dissection	 Careful manipulation of guiding catheter, especially large caliber catheter Careful manipulation of retrograde CTO wires Avoid forceful contrast injection Cautions during deep intubation and 'Child in mother' technique 	 Stenting Surgery
Radiation skin injury	 Minimize fluoroscopy and cine- angiography exposure time. Regular checking up of radiation dose administered during CTO PCI (Postpone if >8 to 10 air kerma exposure) 	Pharmacologic intervention for specific lesion including topical agents

KUGH prevention and management protocol for CTO PCI Complications (3)

Complications	Prevention	Management
Device entrapment including stent loss	 Adequate lesion pretreatment (predilation and atheroablation) Checking the axis of guiding catheter during pullback of device (maintain co-axial) 	Small balloon technique Crushing stenting Snares (loop. Gooseneck) Twisted guidewires Multipurpose basket Myocardial biopsy forcep Distal protection device Surgery
No reflow/Slow flow	 Cautions in angiographic thrombi burden and vulnerable or attenuated plaque on IVUS → Consider distal protection device 	Thrombus aspiration Drugs; Intracoronary injection Nicorandil, Nitroprusside, Verapamil, Nitroglycerin
Acute thrombosis	 Regular ACT monitoring (every 1 hour in case of prolonged CTO PCI) Regular catheter flushing with heparinized saline 	 Thrombus aspiration Medication; additional heparin and GpIIbIIIa inhibitor Stenting Hemodynamic support (IABP, EBS)

CTO-PCI Complication Cases

Dissection/Extravasation Case

Baseline Angiography; Forceful injection at OS should be avoided!

Intraluminal Wiring

Stenting-Final

Successful Intraluminal Wiring and Stenting is essential

Major Perforation/Tamponade Case

LAD CTO-Baseline CAG

Retrograde & Antegrade Wire

Urgent Pericardiocentesis

Perforation-Coiling

Tornado microcoils (Cook)

Final Angiography

- 1. Too aggressive antegrade distal wiring with CTO wire is dangerous.
- 2. Urgent pericardiocentesis and hemostasis (coils and graftstents) should be ready during complex CTO PCI

LM Bifurcation injury case due to catheter and retrograde wire

LCX CTO-Baseline Angiography

Antegrade and Retrograe Wire

LCX extravasation & LM lesion aggravated

Final Angiography

Donor artery injury should be avoided by guidings and wires, especially during ostial CTO PCI

Donor artery thrombosis case

LCA-baselineKyungpook National Univ Hospital CaseCV Complication Club Meeting 2013

CAG-RCA

Retrograde CTO wiring

• wires : Sion - XT – Miracle 6 – Conquest 9 – Conquest 12

Antegrade CTO wiring

Post balloon angiography

Disaster occurred !!!

Disaster occurred !!!

After thrombus aspiration

Balloon and Stent delivery

- 5 in 7, daughter catheter
 - 2.5mm balloon

- 2.5x28mm Nobori dRCA
- 2.5x38mm Promus mRCA

Final CAG

Donor artery thrombosis by catheter induced injury or inadequate anticoagulation; be <u>cautious!!</u>

Retrograde Wire Fracture Case

Baseline Angiography

PCI for RCA CTO :

3rd May 2014

PCI start time AM 2:36

Baseline CAG & Guiding catheter ; LCA → EBU3.5 7F, RCA → AL1 6F side hole short-tip

Retrograde approach; wiring (Fielder XT-R) in first septal branch → passage into PL branch

Bidirectional guidewire tracking

Corsair could not be deeply inserted due to invisible slender channel

Guidewire fracture; Fielder-XT-R

How you would manage? 1) Percutaneous removal 2) Surgery 3) Observation

Anterograde approach & ballooning

Not the exact parallel wiring along the intraluminal retrograde wire!

RCA Stenting to immobilize the fractured wire

Xience 2.75X38mm, 2.5X38mm

Final angiography

Q. Your expectation of this patient's clinical course?

- 1) It will be OK
- 2) May cause further complications

Chest PA after 4 days and 11 days from index procedure; guidewire migration & cardiomegaly

Echo after 5 days and 11 days from index procedure; Pericardial effusion

Ooops! Oh my God!!

Surgically removed guidewire ; Fielder XT-R

Chest PA after surgical removal ; disappearance of guidewire shadow

Discussion Points

1. Prevention

; definite Corsair protection to prevent CTO wire fatigue and fracture

 \rightarrow septal dilation with small balloon and reinsertion of the Corsair will be required.

2. Management

1) Intraluminal true lumen wiring and removal by snare or forcep by anterogradely

2) Surgical removal

Research Fellow 2013-2014

Dr Jabar Ali (Pakistan)

Dr Hu Li (China)

Research Fellow 2014

labar Ali, Harris Ngow, Xu Shaopeng

Summary and Conclusion

- CTO PCI success rate is improving and complication rates are decreasing, suggesting that CTO PCI carries a favorable risk/benefit ratio and supporting its increasing use for this particular tough subset of complex lesions and patients.
- 2. However, still <u>special cautions should be exercised</u> <u>to prevent specific CTO PCI related dangerous</u> <u>complications.</u>
- 3. Operators/catheterization laboratories should be ready to urgently manage the potential procedure-related complications.

Thank You for Your Attention!!

KUMC Guro Hospital, Seoul, Korea

