Pathophysiology of CTO - Based on CT image -

Department of Internal Medicine, Emergency Medicine

Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

2014-12-13, JCR CCT 2014, Busan, Korea

Why we need CT for CTO PCI

CT can tell something better than CAG !

CTO lesion

CT enables systematic evaluation of coronary artery and myocardium

CTO lesion ______ Distal vessel

Ostium and proximal vessel

Myocardial perfusion and viability

Collateral vessel

Donor vessel

CT evaluates whole vessel anatomy

Information available from coronary CT

Ostium and vessel proximal to CTO

Long and fairly large ostium (7 or 8Fr GC is OK)

Straight and positively remodeled mid RCA

Negatively remodeled distal RCA

Distal RCA: small size and bifurcation near exit site

Ostium and vessel proximal to CTO

Relatively short CTO

Ostium is relatively small and upward

- → use guiding catheter with side hole or small size (5 or 6 Fr)
- → Amplatz or XB-type would be preferred than Judkin Rt

Aorto-ostial CTO - invisible vessel ostium

Where is LAD ostium ?

CT revealed nearly hidden separated LAD ostial total occlusion

CT-guided intentional puncture of LM ostium CTO (not aortic wall)

LCX: Sion, LAD: Ultimate 3 \rightarrow Fielder XT \rightarrow Miracle 6

One-stage PCI

2.75x33mm Xience Prime, post VH-IVUS (x2 speed, 60 FPS)

One-stage PCI

Final

Information available from coronary CT

- 1. Subclinical thrombotic occlusion and progression of occlusive lesion (until branches)
- 2. Organized thrombi and proteoglycan/fibrin → Type I collagen and calcification
- 3. Negative remodeling of CTO body
- 4. Microchannel formation intraplaque, or connected to vasa vasorum

Modified from Feyter, Niemann, EuroPCR 2011; Sumitsuji, JACC Interv 2012

Representative case (4): Q wave (+), RWMA (+), and DHE (+)

Choi, Circulation 2013

Representative case (2): no Q wave, no RWMA, but DHE (+)

Choi, Circulation 2013

Evidence of prior MI in CTO: discrepancy among diagnostic modalities

Choi, Circulation 2013

CTO age-dependent change of CTO plaque

Sakakura, Eur Heart J 2013, Srivatsa, JACC 1997

CTO plaque analysis based on CT HU values

Curveplanar reconstructed (CPR)

3D-volumetric analysis by Sureplaque[™]

Choi, Circ J 2011

Remodeling pattern of CTO plaque

Negative remodeling

57.0%

78.5%

 $CTO \leq 1 \text{ yr}$ CTO > 1 yr

Choi, Circ J 2011

CTO is "Inter-Bifurcation" disease

SMC CTO registry, unpublished

Non-invasive discrimination of true CTO and pseudo CTO (or subtotal)

Higher collateral flow through well-developed collateral vessel that flows in antegrade or retrograde direction

Less distal arterial flow compared to vessel with CTO

Kim EK, Choi JH et al., In revision

True CTO

SMC educational file

True CTO

SMC educational file

True CTO

Subtotal occlusion

Subtotal occlusion

Subtotal occlusion

Information available from coronary CT

Beyond anatomical stenosis - Evaluation of myocardial ischemia by CT

Myocardial stress perfusion

Computational fluid dynamics

Transluminal attenuation gradient

Feuchtner , Circ Img 2011 Ho, JACC Img 2010 Ko, Eur Heart J 2011 ... so many papers Yoon, Choi, Koo, JACC Img 2012 DeFACTO, Min, JAMA 2012 DISCOVER-FLOW, Koo, JACC 2011

Wong, JACC 2013 Choi, EHJ Img 2012 Choi, JACC Img 2011 Chow, JACC 2010 Steigner, Circ Img 2009 Lachner, ROFO 2010

Transluminal Attenuation Gradient (TAG)

Gradient of radiological density (HU) along vessel axis TAG reflects kinetics of contrast media in coronary artery A simple method for evaluation of coronary stenosis

Representative case: Retrograde Rentrop 2 flow

TAG_{all} = -3.1 (HU/10mm)

TAG_{distal} = 35.8 (HU/10mm)

Representative case: Antegrade Rentrop 3 flow

 $TAG_{all} = 0.2 (HU/10mm)$

Assessment of flow direction in distal vessel

Choi, Circ Img 2014

Assessment of functional extent of collateral flow

CC 0 CC 1 CC 2

Per-vessel analysis

Choi, Circ Img 2014

Localization of coronary collateral vessels: visual-based

Localization of coronary collateral vessels: Based on knowledge from CT

Collaterals from RV branches and RV conus arteries

Septal collaterals

Collaterals running on atrial wall inferiorly

Length of vessel course and collaterals

SMC unpublished data

CTO: lessons from CT and MR

- 1. Understand coronary ostium and proximal vessel
- 2. Understand CTO plaque
- 3. Understand distal vessel flow and myocardial perfusion
- 4. Pre-planning procedure and device size before real intervention

What is the origin of CTO ?

Subclinical silent MI ? Progressive narrowing ?

- 1. Subclinical thrombotic occlusion and progression of occlusive lesion (until branches)
- 2. Organized thrombi and proteoglycan/fibrin -> Type I collagen and calcification
- 3. Negative remodeling of CTO body

4. Microchannel formation – intraplaque, or connected to vasa vasorum Modified from Feyter, Niemann, EuroPCR 2011; Sumitsuji, JACC Interv 2012

SMC CTO MRI registry

Patients with angiographical total occlusion without history of recent myocardial infarction (<90 days) were consecutively enrolled (N=217)

Does CT help the CTO PCI in real clinical practice ?

Prediction of CTO PCI success by pre-procedural CT

	N of CTO	Success (%)	CT predictors	Independent predictors
Mollet, Am J Cardiol 2005	45	53%	Calcification > 15 mm Blunt stump	Calcification > 15 mm Blunt stump
Soon, J Interv Cardiol 2007	43	56%	Transluminal calcification > 50% Blunt stump (by CAG)	
Otsuka, Int J Cariovasc Imaging 2008	26	100%	None (100% success)	
Cho, Int J Cardiol 2009	72	76%	Length Regional calcium scores % Ca area/CSA	% Ca area/CSA
Garcia, Eurointervention 2009 (CTTO registry)	139	63%	CSA > 50% Angulation Calcium at entry > 15 mm	CSA > 50%
Ehara, J Inv Cardiol 2009	110	85%	Bending, Shrinkage, Calcium	
Choi, Circ J 2010	186	77%	Length > 18 mm Density> 139 HU	CTO > 1 year
Araki, EuroPCR 2011	114	82%	Intramural calc	Intramural calc
Jen, Int J Cardiol 2010	82	81%	Calcium length ration > 0.5 Calcium at proximal and distal stump	

Most accepted predictors: severity of calcification and lesion length

	Variables	and definitions	
Tapered	Blunt	Entry with any tapered tip or dimple indicating direction of true lumen is categorized as "tapered".	Entry shape Tapered (0) Blunt (1)
(1)			point
Calcification	Regard is ass calcific the C	dless of severity, 1 point igned if any evident cation is detected within TO segment.	Calcification
· · · ·	max cro segure it.		point
Bending>45degro	drg>45 lithin TO route dimated TO route separa	oint is assigned if bending> grees is detected within the segment. Any tortuosity ated from the CTO segment	Bending>45° □ Absence (0) □ Presence (1)
at CTO entry at CTO rou	* is excl	uded from this assessment.	point
CTO segment CTO segment rue occlusion length	Occl.Length □ <20mm (0) □ ≥20mm (1)		
			point
Re-try lesion Is this Re-try (2 nd attempt) lesion ? (previously attempted but failed)			Re-try lesion □ No (0) □ Yes (1)
			point
Category of difficulty easy (0) In difficult (2) ve	(total point) termediate ery difficult (≥	(1) ≥3)	Total points

CTO success rate

C	Т	•	
C	•	٠	

CAG:

length	
calc	

calc

length

tapered/blunt (most CTO is bifurcation disease) bending > 45

MRA:

(length)

signal intensity (bright vs dark)

(myocardium)

CT+ vs CT- : Result from K-CTO registry

- Retrospective study using K-CTO data (http://www.e-cto.org), a Korean multicenter registry comprising 26 centers.
- Analysis of clinical, angiographical, and procedural results of 3,498 consecutive CTO PCI cases between Jul 2003 and Sep 2011.
- Comparison of unadjusted data and propensity score matched pairs

CT+ vs CT- : Result from K-CTO registry

- Retrospective study using K-CTO data (http://www.e-cto.org), a Korean multicenter registry comprising 26 centers.
- Analysis of clinical, angiographical, and procedural results of 3,498 consecutive CTO PCI cases between Jul 2003 and Sep 2011.
- Comparison of unadjusted data and propensity score matched pairs

Choi and K-CTO investigators

Take home message

- 1. Coronary CT = **non-invasive CAG + IVUS**
- 2. Review CT / MR before revascularization of CTO or complex lesion, as like as CAG review.
- 3. CT/MR helps you to **understand and have better result** for treatment of CTO and complex coronary lesions.