The Favorable Effects of Statin after Stenting: OCT Study

Jung-Sun Kim, MD, Ph D

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine

HOME
 LOGIN

The authors have no financial conflicts of interest to disclose concerning the presentation.

1. Stent Strut Coverage

2. Neointimal Characteristics

1. Stent Strut Coverage

2. Neointimal Characteristics

Severance Cardiovascular Hospital

Yonsei University College of Medicine

Strut Level Analysis

Kim JS, Ha J, Hong MK, et al. J Am Coll Cardiol Interv 2014

Constant Trial

Primary Outcome: % of uncovered struts on 6-month OCT Secondary outcome : % of malapposition & mean NIH of 6-month OCT and MACEs (Cardiac death, non-fatal MI, TVR or stent thrombosis) at 12-months

Kim JS, Hong MK, et al. Rev Esp Cardiol 2015

Rate of uncovered struts

Kim JS, Hong MK, et al. Rev Esp Cardiol 2015

5153848 Yoon OO Unstable angina

Biolimus eluting stent 3.0x24 at pLAD

POST OCT

3 month FU OCT

Uncovered stent struts: 0 %

Yonsei University College of Medicine

OCT guidance can improve the stent strut coverage.

Then,

What is the further modality to improve stent healing process ?

This study revealed a protective effect of statins against delayed strut coverage in patients with SES who achieved lower LDL cholesterol levels (especially less than 70 mg/dL).

Suh Y, Hong MK, et al, YMJ 2015

Effect of high-dose statin therapy on drug-eluting stent strut coverage

Kim JS, Kim JH, Hong MK, et al. ATBV 2015

Optical coherence tomography images on the atorvastatin and pravastatin groups

Yonsei University College of Medicine

Serial change in the uncovered struts among the statins, stents and time interval (3 and 12 months follow-up)

Overall Stents

Kim JS, Kim JH, Hong MK, et al. ATBV 2015

Serial change in the uncovered struts among the statins, stents and time interval (3 and 12 months follow-up)

Everolimus-eluting stent (EES)

Sirolimus-eluting stent (SES)

Kim JS, Kim JH, Hong MK, et al. ATBV 2015

OCT guidance can improve the stent strut coverage.

In addition,

Optimal statin treatment may play a beneficial role on improve stent strut coverage.

1. Stent Strut Coverage

2. Neointimal Characteristics

OCT Can Provide Qualitative Information of Neointima

Yonsei University College of Medicine

Abnormal Neointima

Text Book; Cardiovascular OCT Imaging: Late stent change, Kim JS, Hong MK, Jang Y

Severance Cardiovascular Hospital

Yonsei University College of Medicine

Prevalence of Heterogeneous Neointima & Neoatherosclerosis

Prevalence 20-30 % according to clinical population of patients, stent age or definition of each study

Duration	8-9 Months	9 Months	22 Months (median)	24 Months	7 Months (median)	12 Months (median)	<9 Months
Type of DES	1 st & 2 nd Generation	1 st & 2 nd Generation	1 st & 2 nd Generation	1 st & 2 nd Generation	2 nd Generation	1 st Generation	1 st & 2 nd Generation
Type of Study	OCT	OCT	OCT	ОСТ	Histology	Histology	OCT
Definition of Neoathero- sclerosis or OCT Heterogeneous Pattern	Heterogeneous neointima, focally changing optical properties and various backscattering patterns	Lipid laden neointima	Lipid laden neointima calcification, or TCFA	Lipid laden neointima	Clusters of foamy macrophages within the neointima with/without necrotic core formation	Clusters of foamy macrophages within the neointima with/without necrotic core formation	Lipid laden neointima
Type of Lesion	Percent NIH CSA 18.8%	Percent NIH CSA 18.7±11.3%	>50 stenosis	Percent NIH CSA 23.4±14.5%	Autopsy	Autopsy	Stable AP (73%) & NSTEMI (27%)
Published Year	2014	2012	2013	2012	2013	2011	2012
Reference	Kim et al. (9)	Kim at al. (8)	Lee et al. (12)	Kim et al. (8)	Otsuka et al. (10)	Nakazawa et al. (4)	Yonetsu et al. (11)

Kenichi S, Virmani R, et al. J Am Coll Cardiol Img 2014

Representative images of OCT and histologic sections.

(A) **Homogeneous** neointimal pattern in OCT has a collagen rich neointima (bluish color) (B) **heterogeneous** neointimal pattern shows lots of loose connective tissue (grey color) and fibrin (pink color) (C) **layered neointimal** pattern shows thick neointima, external elastic laminal rupture and peristrut inflammation (D) **neovascularization** is shown in the middle of neointima.

Kim JS, Granada JF, et al. Eur Heart J Cardiovasc Imaging 2013

The Clinical Implication of Neointimal Characteristics

Primary Outcome: MACE (CV death, non-fatal MI and TLR)

Kim JS, Lee JH, Hong MK, et al. J Am Coll Cardiol Imag 2014

Kim JS, Lee JH, Hong MK, et al. J Am Coll Cardiol Imag 2014

How can we modify the neointimal characteristics ?

Serial changes in representative images

Optimal LDL treatment

Conventional treatment

(A) There were **no changes in homogeneous** neointimal characteristics in the optimal lipid-lowering group. (B) Changes from the non-homogeneous to homogeneous neointima were observed in the optimal lipid-lowering group. (C) Changes from the homogeneous to non-homogeneous neointima were observed in the conventional group. (D) There were **no changes in non-homogeneous** neointimal characteristics in the conventional group

intensive reduction in LDL-C levels can prevent nonhomogeneous change

Serial qualitative changes in neointima

Difference between first and second follow-up OCT	Optimal group	Conventional group	р		
Δ Neointimal thickness (µm)	28.6 (4.4–57.1)	31.9 (12.0–74.8)	0.09		
Δ Lumen CSA (mm²)	-0.5±0.8	-0.6±0.9	0.32		
Δ Stent CSA (mm²)	-0.2±0.7	-0.1±0.7	0.56		
Δ Neointimal CSA (mm ²)	0.2±0.4	0.4±0.5	0.01		
Δ Percent neointimal CSA (%)	3.1±5.5	5.5±6.4	0.03		
V P=0.03 S S S S S S S S S S					

Multivariate logistic analysis

	OR	95% CI	homogeneous					P	value
Age	1.11	(0.98~1.25)		A -					0.08
Male	0.47	(0.09~2.45)	⊷_∆						0.37
Diabetes mellitus	1.12	(0.18~6.79)	F	Δ					0.90
Hypertension	0.31	(0.06~1.66)	⊢ ∆						0.17
ACS	0.93	(0.18~4.72)	► ∠	4					0.93
1 st -generation DES	2.18	(0.44~10.82)			_Δ				0.34
Optimal LDL-C control	0.05	(0.01~0.46)	△						0.008
Stent diameter (mm)	0.23	(0.02~3.33)	► <u>∆</u>						0.23
Stent length (mm)	1.11	(0.97~1.27)		- A- 1					0.12
			0	1 2	2	3	4	 5	

Clinical Implication of Neointimal Characteristics

- This findings implied that although the quantitative growth of neointimal tissue were important factors for the occurrence of MACEs after stent implantation, the qualitative pattern of neointimal characteristics might be also a possible prognostic parameter.
- Optimal statin treatment may have a protective effect to progression of abnormal pattern of neointima and reverse to normal pattern of neointima.

SUMMARY

Intensive reduction in LDL- C by high intensity statin may improve a stent healing process and prevent the abnormal degeneration of neointimal tissue.

Thanks for your Attention

Severance Cardiovascular Hospital

Yonsei University College of Medicine

Severance Cardiovascular Hospital

Yonsei University College of Medicine

Heterogeneous Pattern of Neointima

loose tissue containing
scattered short spindle cells
in the myxoid stroma on
pathologic examination

Cho SS, et al Circulation 2015

Neointimal tissue of In-stent Restenosis

Restenotic tissue structure This study demonstrated that the incidence of heterogeneous neointima in patients presenting with stable angina was 6.7% (1/15) versus 40.0 % (4/10) in patients with unstable angina. show focal variations in backscattering patterns optical properties: an adluminal high scattering layer and an abluminal low

scattering layer

	A			
	Diffuse (n = 9)	Focal (n = 11)	Margin (n = 5)	р
Layered	7 (77.8%)	5 (45.5%)	1 (20%)	0.005
Homogeneous	2 (22.2%)	1 (9.1%)	4 (80%)	
Heterogeneous	0	5 (45.5%)	0	

Gonzalo N, et al. Am Heart J 2009;158:284-93

Possible direction for OCT-based ISR treatment strategies

CASE: F/59

CC: Unstable angina P/Hx : HTN, DM

Yonsei University College of Medicine

Matched Analysis of Serial Change

Difference between first and second follow-up OCT

Variable	Optimal group (N=121)	Conventional group (n=97)	p
Δ Neointimal thickness (µm)	28.6 (4.4 - 57.1)	31.9 (12.0 – 74.8)	0.09
Δ Lumen CSA (mm²)	-0.5±0.8	-0.6±0.9	0.32
Δ Stent CSA (mm²)	-0.2±0.7	-0.1±0.7	0.56
Δ Neointimal CSA (mm ²)	0.2±0.4	0.4±0.5	0.01
Δ Percent neointimal CSA (%)	3.7±6.3	6.2±7.6	0.01

CSA=cross section area, OCT=optical coherence tomography. Δ indicates the difference between values from the first and second follow-up OCT

Jang JY, Kim JS, Hong MK, et al . Atherosclerosis 2015 In Press

Independent predictors of neointimal change

	Univariate Ana	alysis	Multivariate Analysis	
Variable	OR (95% CI)	p	OR (95% CI)	p
Baseline LDL-C>100mg/dL	0.89 (0.25~3.19)	0.85		
Optimal LDL-C control	0.07 (0.01~0.58)	0.01	0.04 (0.01~0.41)	0.006
Male	0.38 (0.12~1.26)	0.12	0.67 (0.14~3.11)	0.61
Age	1.07 (0.99~1.15)	0.08	1.13 (1.01~1.27)	0.03
Diabetes mellitus	0.87 (0.22~3.38)	0.84	1.43 (0.27~7.48)	0.68
Hypertension	0.78 (0.24~2.59)	0.68	0.24 (0.05~1.29)	0.10
1 st -generation drug-eluting stents	2.44 (0.73~8.08)	0.15	1.67 (0.39~7.13)	0.49
Acute coronary syndrome as Initial presentation	0.99 (0.30~3.30)	0.99	0.55 (0.11~2.80)	0.47
	Jang JY, Kim JS, H	long MK,	et al . Atherosclerosis	2015 In Press

Severance Cardiovascular Hospital

Yonsei University College of Medicine

COMPASS trial

Patients received DES between 1 and 2 year before OCT evaluation
 Patients received OCT related to clinical needs or end point of other study

CASE: F/59

PCI at dRCA (Cypher 3.5 x 18mm) & 6month F/U angiography

After 2 years

Follow up angiogram d/t chest discomfort →PTCA c DEB at dRCA (Sequent please 3.5 x 15)

Yonsei University College of Medicine

 However, the relationship between different OCTbased neointimal characteristics and clinical outcomes has not been well investigated.

Therefore, we tried to find out the correlation between in-stent neointimal characteristics as assessed by OCT and clinical outcomes.

Serial Change of Neointimal Tissue

(A) Uncovered struts at 9 months were covered with neointima on 2 yr FU (white arrow).
 (B) Appearance of a low density abnormal tissue structure over uncovered struts during serial follow-up (white arrow), (C) Extrastent lumen not present at 9 months was noted at 2 yr FU (yellow arrow),
 (D) Increase in the low density within heterogeneous neointima between 9 months (white arrow) and 2 yr (yellow arrow).
 Kim JS, MK Hong, et al. J Am Coll Cardiol Img 2012

Methods

- (A) Homogeneous pattern : an uniform signal-rich band without focal variation or attenuation.
- **(B)** Heterogeneous pattern : focally changing optical properties and various backscattering patterns.
- **(C)** Layered pattern : layers with different optical properties, namely an adluminal high scattering layer and abluminal low scattering layer.

Predictors for MACEs

	Univariate analys	sis	Multivariate analysis		
	HR (95% CI)	р	HR (95% CI)	р	
Age (per years)	1.006 (0.959-1.055)	0.814	0.970 (0.915-1.029)	0.314	
Gender (male)	0.931 (0.371-2.333)	0.879	0.885 (0.309-2.421)	0.865	
Hypertension	0.688 (0.286-1.652)	0.402			
Diabetes mellitus	1.881 (0.779-4.539)	0.160	1.262 (0.479-3.326)	0.638	
Initial ACS dx	1.586 (0.648-3.884)	0.312	1.008 (0.384-2.648)	0.987	
1st gen. DES	2.440 (0.980-6.075)	0.055	2.447 (0.792-7.560)	0.120	
Time interval to OCT (months)	1.018 (1.003-1.033)	0.017	0.988 (0.958-1.020)	0.457	
Minimal lumen CSA (per mm ²)	0.319 (0.206-0.495)	<0.001	0.421 (0.267-0.664)	<0.001	
Stent length (per mm)	1.024 (0.954-1.098)	0.513			
Heterogeneous pattern*	5.638 (2.044-15.549)	0.001	4.524 (1.293-15.825)	0.018	
Layered group*	2.632 (0.743-9.332)	0.134	1.880 (0.478-7.394)	0.366	

Baseline characteristics

	Homogeneous (n=208)	Heterogeneous (n=73)	Layered (n=55)	р
Age (years)	60.8 ± 9.6	64.0 ± 7.9	63.5 ± 7.9	0.014
Male, n (%)	134 (64.4)	52 (71.2)	39 (70.9)	0.450
Diabetes mellitus, n (%)	58 (27.9)	24 (32.9)	22 (40.0)	0.207
Hypertension, n (%)	125 (60.1)	40 (54.8)	36 (65.5)	0.472
Dyslipidemia, n (%)	95 (45.7)	25 (34.2)	25 (45.5)	0.221
Current smoker, n (%)	39 (18.8)	19 (26.0)	15 (27.3)	0.238
Chronic renal failure, n (%)	3 (1.4)	1 (1.4)	0 (0.0)	0.672
Clinical presentation, n (%)				0.096
Stable angina	117 (56.3)	31 (42.5)	32 (58.2)	
Acute coronary syndrome	91 (43.8)	42 (57.5)	23 (41.8)	

OCT analysis

	Homogeneous (n=227)	Heterogeneous (n=79)	Layered (n=62)	р
Total frames	5380	1649	1386	
Median time interval (m), IQR	9.0 (6.0-10.0)	8.0 (5.0-10.0)	9.0 (6.0-11.0)	0.637
Mean stent CSA (mm ²)	7.1 \pm 1.9	7.1 ± 2.1	7.3 ± 1.8	0.599
Mean neointimal CSA (mm ²)	$\textbf{1.2} \pm \textbf{0.7}$	$\textbf{1.4} \pm \textbf{0.9}$	$\textbf{1.9} \pm \textbf{1.2}$	<0.001
Mean lumen CSA (mm²)	5.9 ± 1.7	5.7 ± 1.9	5.5 ± 1.7	0.193
Minimal lumen area (mm ²)	4.5 ± 1.6	4.0 ± 1.9	3.7 ± 1.8	0.001
Mean neointimal thickness (µm)	138 ± 68	168 ± 119	217 ± 133	<0.001
Neointimal CSA (%)	$\textbf{16.5} \pm \textbf{8.1}$	$\textbf{20.1} \pm \textbf{12.9}$	25.4 ± 13.7	<0.001
Uncovered strut (%)	3.4 ± 5.4	4.7 ± 8.0	4.1 ± 7.3	0.293

Predictors for Heterogeneous Pattern

	Univariate analy	sis	Multivariate analysis		
	OR (95% CI)	р	OR (95% CI)	р	
Age (per years)	1.032 (1.003-1.062)	0.029	1.039 (1.008-1.070)	0.013	
Gender (male)	1.046 (0.616-1.775)	0.868	0.852 (0.484-1.498)	0.578	
1 st gen. DES	1.125 (0.662-1.912)	0.663			
Initial ACS dx	1.874 (1.130-3.107)	0.015	2.010 (1.182-3.418)	0.010	
Diabetes mellitus	1.289 (0.758-2.190)	0.348	1.396 (0.797-2.443)	0.243	
Hypertension	0.831 (0.503-1.373)	0.470			
Dyslipidemia	0.662 (0.395-1.109)	0.117	0.723 (0.419-1.248)	0.244	
Chronic renal failure	0.913 (0.101-8.290)	0.936			
Time interval to OCT (m)	1.015 (1.002-1.028)	<0.001	1.014 (0.999-1.025)	0.079	
Uncovered struts (%)	1.024 (0.989-1.061)	0.179	1.022 (0.986-1.060)	0.230	
Stent length (per mm)	0.975 (0.938-1.014)	0.206			

MACE during follow up after OCT

	Homogeneous	Heterogeneous	Layered	
	(n=208)	(n=73)	(n=55)	р
A composite of cardiac death,	6 (2 0%)	10 (12 79/)	A (7 20/)	0.001
non-fatal MI, or TLR	6 (2.9%)	10 (13.7%)	4 (7.3%)	0.001
Cardiac death	1 (0.5%)	0 (0.0%)	0 (0.0%)	0.780
Non-fatal MI	0 (0.0%)	3 (4.1%)	0 (0.0%)	<0.001
TLR	5 (2.4%)	7 (9.6%)	4 (7.3%)	0.020
Stent thrombosis	1 (0.5%)	3 (4.1%)	0 (0.0%)	0.006

TLR and Stent Thrombosis

152 ISR lesions with intimal hyperplasia > 50% of stent area

	Presence of	Absence of	р
	neoatherosclerosis	neoatherosclerosis	
	(n = 54)	(n = 98)	
Time interval to follow-up OCT (months)	70.7 (54.4 – 120.4)	13.4 (10.6 – 39.6)	< 0.001
Clinical variables			
Clinical presentation at follow-			< 0.001
up OCT, # (%)			
Asymptomatic	4 (7.4)	22 (22.4)	
Stable angina	33 (61.1)	72 (73.5)	
Acute coronary syndrome	17 (31.5)	4 (4.1)	
Target lesion revascularization, # (%)	50 (92.6)	76 (77.6)	0.018
Stent thrombosis, # (%)	8 (14.8)	0 (0)	< 0.001
	Lee SY, Hong	MK, et al, Eurointerven	tion 2014

Clinical and pathological characteristics of homogeneous and nonhomogeneous tissue of instent restenosis visualized by optical coherence tomography.

Tomonori I, et al; Coronary Artery Disease. 26(3):201-211, May 2015.

Fig. 1. Representative case of OCT-NSD value analysis. OCT signal-intensity normalized standard deviation (OCT-NSD) in NIH tissue at the minimal lumen area evaluated by Tissue Properties (LightLab Imaging, Westford, Massachusetts, USA). The region of interest (ROI) was defined in the frame at the minimal lumen area near the surface of the ISR lesion using three points to randomly designate the ROI. Moreover, ROI at a control site was defined in the phantom model to determine the normalization factor. ROI in ISR was set up as a circle with a diameter of 0.127 mm in each case (as near as possible to 0.4 mm2). The homogeneous image case shows that the OCT-NSD value was 0.178. ISR, in-stent restenosis; NIH, neo-intimal hyperplasia; OCT, optical coherence tomography.

Clinical and pathological characteristics of homogeneous and nonhomogeneous tissue of instent restenosis visualized by optical coherence tomography.

Tomonori I, et al; Coronary Artery Disease. 26(3):201-211, May 2015.

Representative case (case 11) in the nonhomogeneous image group without neolipidic tissue. This case was implanted with two zotarolimus-eluting stents (3.0/18 and 2.75/18 mm) previously at the right coronary artery and showed ISR after 8 months. OCT showed a layered ISR image (upper panel). OCT-NSD values were 0.241 at the ISR site. Collected pathological tissues showed fibrin thrombus (PTAH-positive) with CD68-positive cells (lower panel). ISR, instent restenosis; NSD, normalized standard deviation; OCT, optical coherence tomography.

6 months follow angiography

QCA analysis Diameter stenosis = 29.4%

OCT analysis Stent area= 6.80 mm2 Lumen area= 2.75mm2 NIH = 59.6%

2 years follow angiography

QCA analysis Diameter stenosis = 72.8%

OCT analysis Stent area= 6.38 mm2 Lumen area= 1.59 mm2 NIH = 75.1 %

Angiographic characteristics

	Homogeneous (n=227)	Heterogeneous (n=79)	Layered (n=62)	р
Target coronary artery				0.033
Left anterior descending	117 (51.5)	46 (58.2)	28 (45.2)	
Left circumflex	58 (25.6)	14 (17.7)	9 (14.5)	
Right	52 (22.9)	19 (24.1)	25 (40.3)	
Stent types, n (%)				
Bare-metal stent	0 (0.0)	3 (3.8)	0 (0.0)	0.004
Drug-eluting stent	227 (100.0)	76 (96.2)	289 (100.0)	
1st generation DES	74 (32.6)	27 (35.5)	21 (33.9)	0.893
Stent diameter (mm)	$\textbf{3.0} \pm \textbf{0.3}$	$\textbf{3.1} \pm \textbf{0.4}$	3.0 ± 0.4	0.125
Total stent length (mm)	24.1 ± 6.2	$\textbf{21.4} \pm \textbf{6.4}$	23.6 ± 6.6	0.006

Associations between restenotic tissue structure and mid-term results

Tada T, et al. Eur Hear J Cardiovasc Img 2015;16:1101-11

