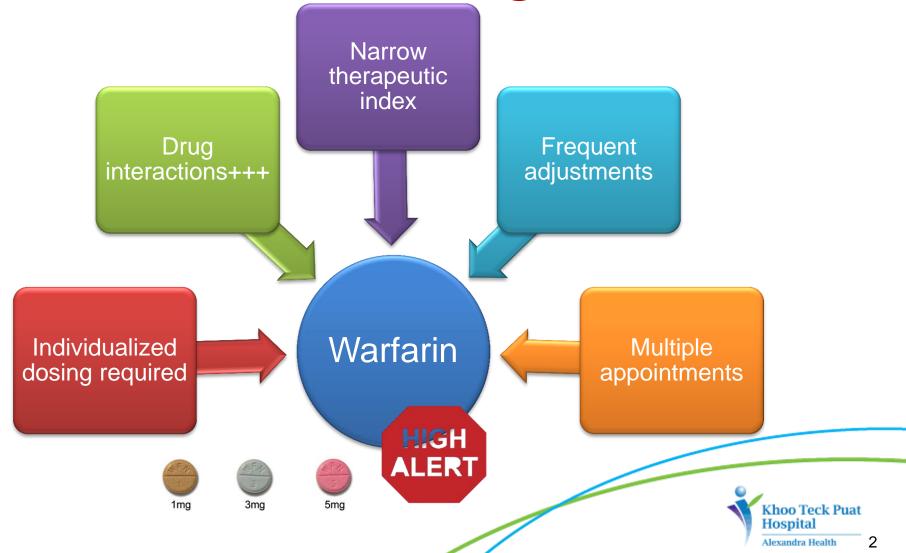
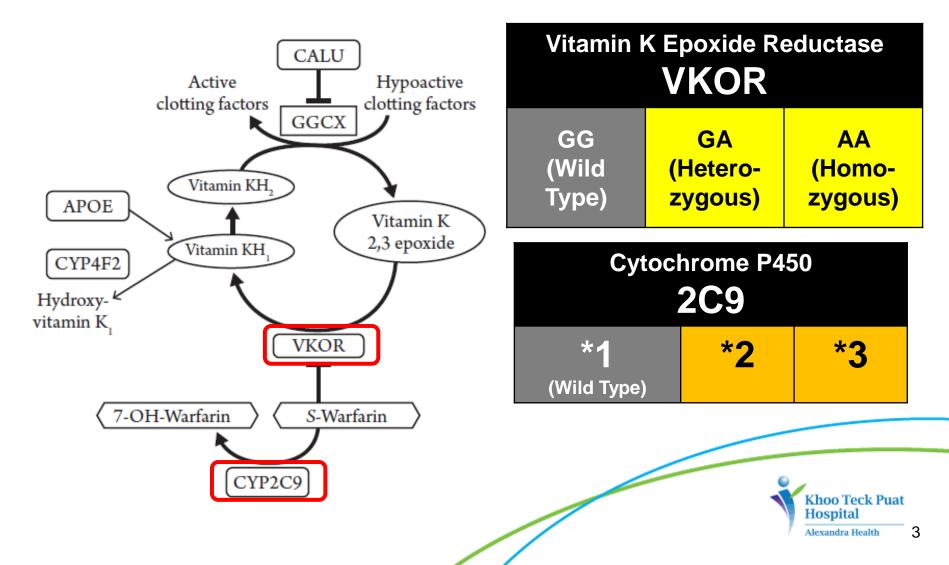
THE AREGENSION Genotype-guided Warfarin Dosing in Local Patients Initiating Oral Anticoagulation A Clinical Outcomes Study

Chang Grace SW^{1,2}, Wee Xue Ting², Aw Wan Xin², Ong Hean Yee³, Aznan Omar⁴, Ho Han Kiat¹, Tan Doreen SY² ¹Dept of Pharmacy, NUS, ²Dept of Pharmacy, KTPH, ³Dept of Cardiology, KTPH, ⁴Dept of Laboratory Medicine, KTPH


Grace Chang

Pharm.D., BCPS, BCACP Senior Clinical Pharmacist Department of Pharmacy

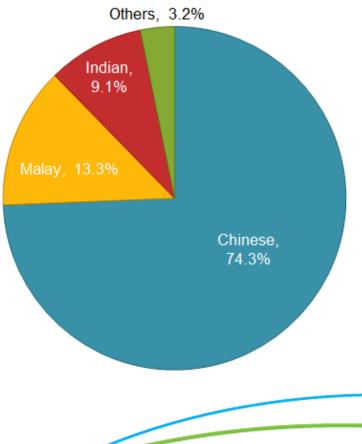


Challenges to Warfarin Management

Warfarin Genotyping Where polymorphisms occur

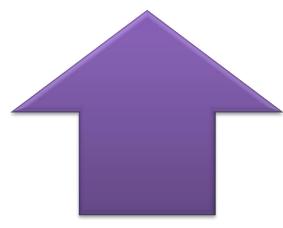
Warfarin Genotyping Prevalence of common variants

Table 3. Prevalence, by Race, of common allelic variants associated withWarfarin metabolism

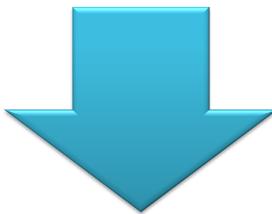

			Prevalence	e
Gene	Allele	Caucasians (%)	Asians (%)	African Americans (%)
VKORC1	-1639A	60	99	25
CYP2C9	CYP2C9*2	20	<1	4
	CYP2C9*3	12	6-8	2
	CYP2C9*5	<1	<1	1-2
	CYP2C9*6	<1	<1	4
	CYP2C9*8	<1	<1	12
	CYP2C9*11	<1	<1	4
CYP4F2	Rs2108622: G>A	40	50	0-10

Jaekyu S, Larisa C. Warfarin Pharmacogenetics. Pharmacotherapy Self-Assessment Program VII Chronic Illnesses. 2009:51-65.

Distribution of Ethnicities Singapore



Dept of Statistics, Singapore http://www.singstats.gov.sg



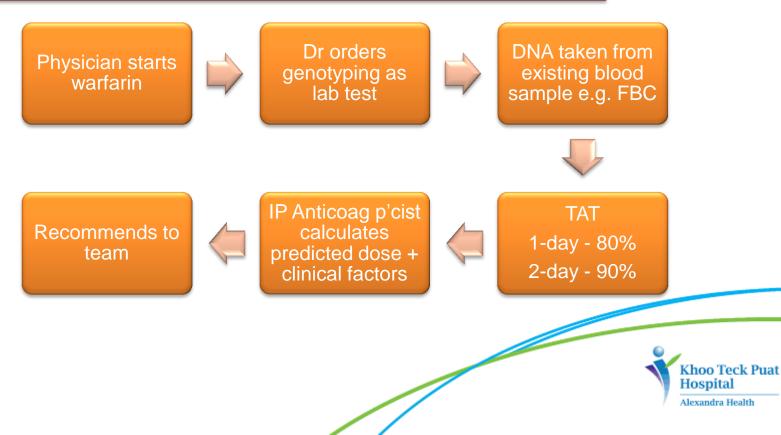
Warfarin Genotyping What we know

Benefits¹⁻³

- \uparrow time within therapeutic range
- ↓ out-of-range INRs
- ↓ adverse events

Challenges

- Availability of technology in hospital setting
- Ease of day-to-day use
- 1. Anderson JL et al. Circulation. 2012;125(16):1997-2005.
- 2. Pirmohamed M et al. N Engl J Med. 2013;369(24):2294-303.
- Epstein RL et al. Journal of the American College of Cardiology. 2010;55(25):2804-12.

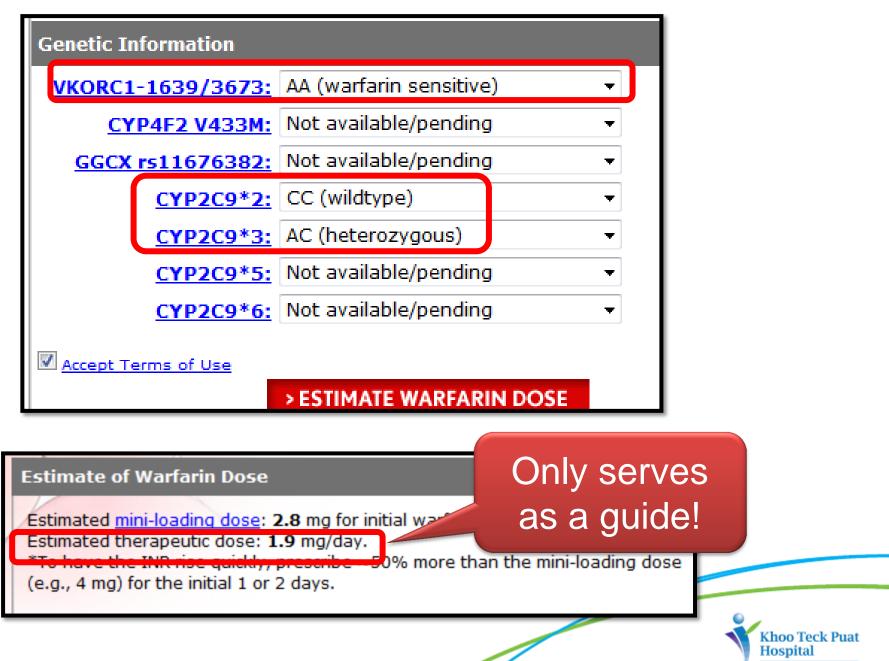


The WARFGEN Project

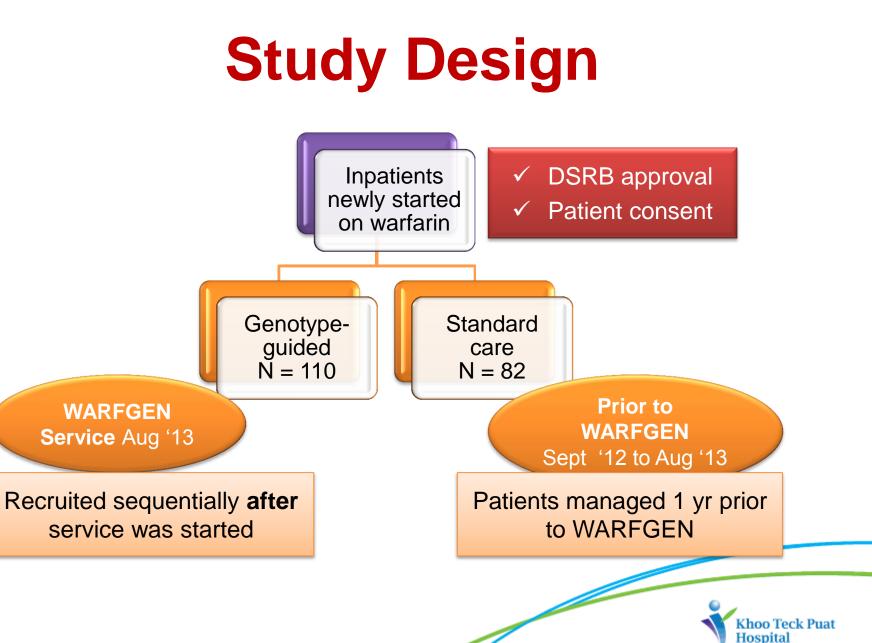
Hypothesis

Using genotype information to guide dosing can further improve anticoagulation management in patients newly initiated on warfarin

Dose Calculation


Using Dosing Algorithm

Algorithm by Gage et al


exp[0.9751 – 0.3238 × VKOR3673G>A + 0.4317 × BSA – 0.4008 × CYP2C9*3– 0.00745 × age – 0.2066 × CYP2C9*2+ 0.2029 × target INR – 0.2538 x amiodarone + 0.0922 × smokes – 0.0901 × African-American race + 0.0664 × DVT/PE], where the SNPs are coded 0 if absent, 1 if heterozygous, and 2 if homozygous, and race is coded as 1 if African American and 0 otherwise.

Required Patient Information	nttp://ww	w.warfarindosing	.org
Age: 76 Sex: Male -	Ethnicity:	Non-Hispanic 🔻	
Race: Asian or Indian subcontinent	•		
Weight: 121 lbs or 55 kgs	BSA	1.63	
Height: (5 feet and 7 inch	es) or (170	cms)	
Smokes: No	: No	•	
ndication: Deep venous thrombosis	•		
aseline INR: 0.96 Target INF	2.5	🗖 Randomize & Blind	
miodarone/Cordarone® Dose: 0	mg/day		
<u> statin/HMG CoA Reductase Inhibitor:</u>	Simvastatin/	/Zocor®/Vytorin® -	
Any azole (eg. Fluconazole): No	•		
Sulfamethoxazole/Septra/Bactrim/C	otrim/Sulfatr	im: No 🔻	Khoo Teck Puat
			Hospital Alexandra Health

Gage BF et al. Clin Pharmacol Ther. 2008;84(3):326-31.

Alexandra Health

Clinical Outcomes Study Outcomes

1.Time-in-Therapeutic Range (%) of 1.8 – 3.2

• 'Gold standard' for anticoagulation management

2.Time (days) required to achieve stable dose

• Can it reduce the number of titration steps / appointments ?

3. Time (days) to reach therapeutic INR range

Can we hit a safe range sooner?

4. Incidence of bleeding / thromboembolic events

• INR > 5

Results Baseline Demographics

Characteristic	Standard Care Group (N=82)	Genotype- Guided Group (N=110)	P value
Age in years - mean (SD)	60.4 ± 12.5	62.4 ± 13.0	0.29
Male sex - no. (%)	33 (40.2)	47 (42.7)	0.37
Ethnic group - no. (%)			
Chinese	48 (58.5)	59 (53.6)	0.06
Malay	19 (23.2)	41 (37.3)	
Indian	11 (13.4)	9 (8.2)	
Caucasian / Others	4 (4.9)	1 (0.9)	
Weight in kg - mean (SD)	72.1 ± 17.1	66.3 ± 13.7	0.01*
CrCl ml/min	100 ± 51.7	135.3 ± 62.4	<0.01*
Mean (SD)			

Characteristic	Standard Care Group (N=82)	Genotype-Guided Group (N=110)	P value
Primary indication for warfarin - no. (%)			0.058
Atrial fibrillation	25 (30.5)	45 (40.9)	
DVT / PE	37 (45.1)	33 (30.0)	
Stroke / TIA	4 (4.9)	7 (6.4)	
Valve replacement	0 (0.0)	1 (0.9)	
Intracardiac thrombus	8 (9.8)	22 (20.0)	
Acute limb ischemia	2 (2.4)	1 (0.9)	
Others	6 (7.3)	1 (0.9)	
Comorbidities that may affect INR - no. (%)			0.02*
None	67 (81.7)	67 (60.9)	
Risk of fluid overload (CHF / ESRF)	11 (13.4)	33 (30.0)	
Thyroid disorders	3 (3.7)	5 (4.5)	
Psychiatric disorders	1 (1.2)	2 (1.8)	
Malignancy / cancer	0 (0.0)	0 (0.0)	
Current use of			
Statins (any)	42 (51.2)	81 (73.6)	<0.01*
Amiodarone	0 (0.0)	7 (6.4)	0.02*
Antiplatelets	27 (32.9)	28 (23.5)	0.38
Azole antifungals	1 (1.2)	0 (0.0)	0.25
 Genotype-guided group had More AF & IC thrombus Fewer VTE 			
 More had risk of fluid overload (†INR) More on statins & amiodarone 		Hos	oo Teck Puat pital ndra Health 15

Distribution of Genetic Variants N = 110

		Chinese (%) (N=59)	Malays (%) (N=41)	Indians (%) (N=9)
VKORO	VKORC1 (1639G>A)			
No va	riants/WT	3 (5.1)	4 (9.8)	5 (55.5)
Many Heter	ozygous	14 (23.7)	19 (46.3)	3 (33.3)
warfarin sensitive: Homo VKOR	zygous	42 (71.2)	18 (43.9)	1 (11.1)
CYP2C9 mutants ery rare: <1% CYP2C	riants/W ozygous zygous • ✓ C ✓ Di • ✓ Di • ◆ P	ublished lit linical obse fferences k nicities – ur	ervations petween	8 (88.9) 1 (11.1) 0 7 (77.8)
Heter	ozygous Sing	Singapore!		1 (11.1)
	zygous	0	0	1 (11.1)
				Khoo Teck Pu Hospital

Proposal of pharmacogenetics-based warfarin dosing	
algorithm in Korean patients	

Jung Ran Choi^{1,10,11}, Jeong-Oh Kim^{1,11}, Dae Ryong Kang², Seong-Ae Yoon¹, Jung-Young Shin¹, XiangHua Zhang¹, Mee Ork Roh³, Hyung Joo Hong³, Young-Pil Wang⁴, Keon-Hyon Jo⁴, Kwang-Soo Lee⁵, Ho-Jung Yun⁶, Yong-Seog Oh⁶, Ki-Dong Yoo⁷, Hee-Gyeong Jeon⁸, Yoon Sook Lee⁹, Tae Sun Kang⁹, Hyun-Joo Park⁹, Myeon Woo Chung⁹ and Jin-Hyoung Kang^{1,3}

Warfarin is a commonly prescribed anticoagulant drug for the prevention of thromboembolic disorders. We investigated the contribution of genetic variations of four genes and clinical factors to warfarin dose requirement and provided a warfarin-dosing

Choi JR et al. J Hum Genet. 2011;56(4):290-5.

N (%)
87.4
11.7
0.9
N (%)
92.0
8.0

	VKORC1 1639	N (%)	
Pharmacogenetic distribution of warfarin and its clinical	AA (homozyg)	89.0	
significance in Korean patients during initial anticoagulation	GA (heterozyg)	11.0	
therapy	GG (wild)	0.0	
Aerin Kwon · Sang-Ho Jo · Hyoung-June Im ·	CYP2C9	N (%)	
Yun-A Jo · Ji-Young Park · Hee Jung Kang ·	*1 / *1 (wild)	87.0	
Han-Sung Kim · Hyoun Chan Cho · Young Kyung Lee	*1 / *3 (het var)	11.0	
	*3 / *3 (homo var)	2.0	
Kwon A et al. J Thromb Thrombolysis. 2011;32(4):467-73.			

Similar to S'poreans (** of Chinese ethnicity

Clinical Outcomes Study Primary Outcomes

Outcomes	Standard Care (N = 82)	Genotype-guided (N = 110)	P value
Mean 90-day Time In Therapeutic Range (%)	72.3 (± 25.5) (N=81)	70.9 (± 23.3) (N=104)	0.46
Time (days) to achieve stable dose	11.0 ± 27.2	10.0 ± 18.8	0.70
Time (days) to achieve therapeutic INR	6.0 ± 12.6	5.2 ± 17.4	0.67
Adverse events (no.) Incidence of INR ≥ 5 Bleeding / TE	2 0	10 0	-

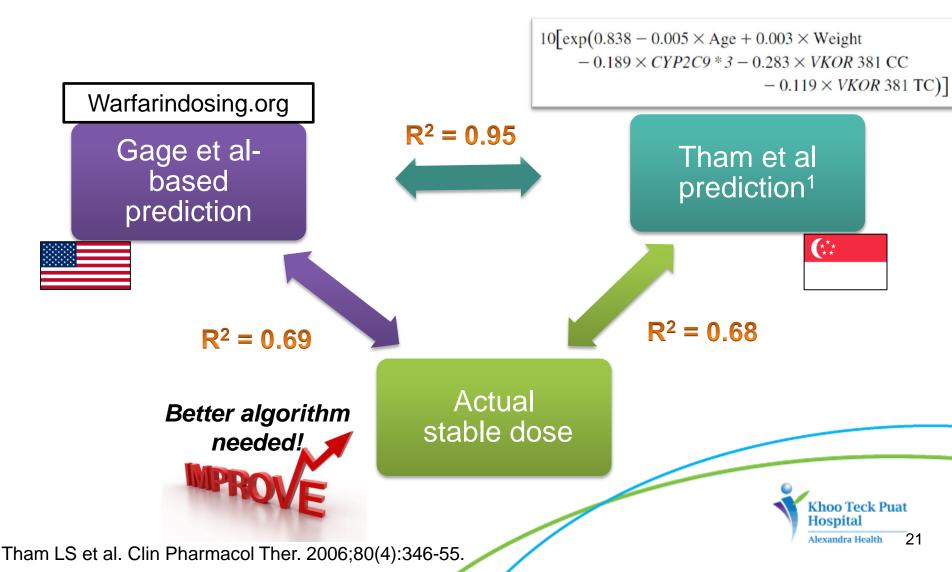
No significant difference in outcomes

Clinical Outcomes Study Primary Outcomes

Outcomes	Standard Care (N = 81)	Genotype-guided (N = 104)	P value
Mean 90-day Time In Therapeutic Range (%)	72.3 (± 25.5)	70.9 (± 23.3)	0.46

Landmark Trial	Mean TTR	Singapore's TTR	
RE-LY (dabigatran)	64%	68%	
ROCKET-AF (rivaroxaban)	55%		Study TTR > than published literature
ARISTOTLE (apixaban)	62%	68%	
AVERRROES (apixaban)	64%		
			Khoo Teck Puat Hospital Alexandra Health

Algorithm Performance Prediction Accuracy - Gage et al


Mean overestimation of

0.4 ± 1.3 mg/day

- i.e., actual doses are lower
- Possibly:
 - -Clinical factors
 - »e.g. fever, sepsis, fluid overload
 - -Factors unaccounted for

Algorithm Performance Comparison of Predictive Accuracy

Discussion Achievements

- Fully operational PGx dosing service in KTPH
- Relevance of genotyping established
 - Large % do have high warfarin sensitivity
 - Springboard for Warfarin Genotype Registry
 - Collaboration with International Groups
- Evaluated performance of published algorithms in our population
 - Gage vs Tham et al.

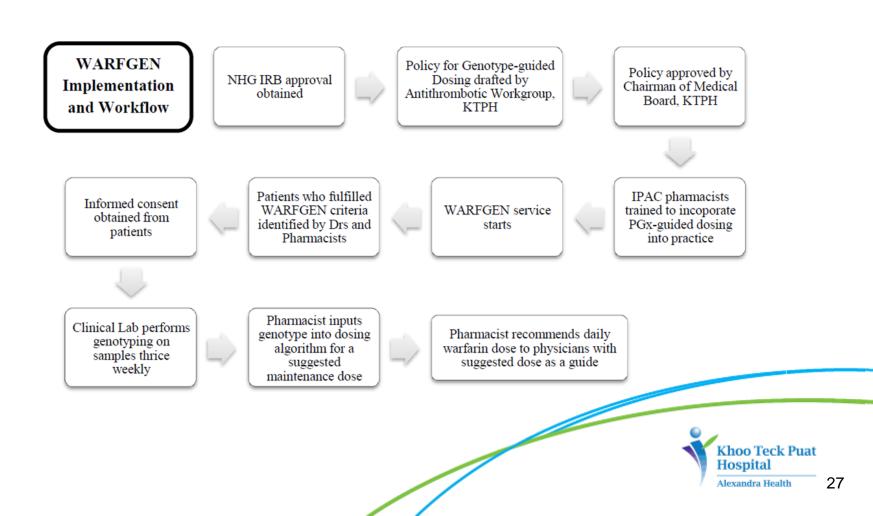
Further Research

Moving forward

- Benefit for special populations
 - CKD ± dialysis
 - Multiple comorbidities
 - Drug interactions
 - Rifampicin (pTB)
- Impact of other genes
 - CYP 4F2, yet-to-be-discovered

THE AREGENS Genotype-guided Warfarin Dosing in Local Patients Initiating Oral Anticoagulation A Clinical Outcomes Study

Thank you



Backup Slides

WARFGEN – 3 phases

PHASE 2: Implementation of the KTPH Genotype-guided Dosing Service

New Oral Anticoagulants vs. Warfarin Treatment: No Need for Pharmacogenomics?

WL Baker^{1,2} and KW Chamberlin^{1,2}

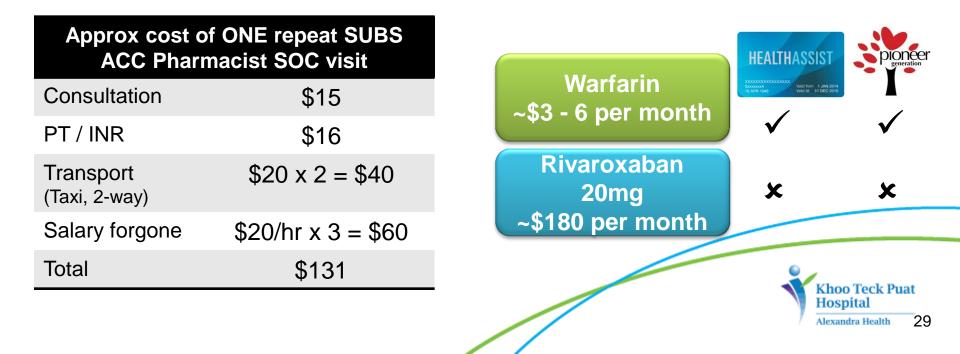
For patients requiring long-term anticoagulation, oral vitamin K antagonists (VKAs) such as warfarin have overwhelming efficacy data and present significant challenges. In addition to the potential exposure to numerous drugdrug and drug-food interactions, patients receiving warfarin require frequent monitoring. It had been hoped that the integration of pharmacogenomic with clinical information would improve anticoagulation control with warfarin, but trials have not supported this aim. Novel oral anticoagulants (NOACs) offer both advantages and disadvantages and deserve consideration in appropriate patients

of events, VKA therapy can be expected to prevent 15 deaths and 15 nonfatal strokes per 1,000 patients while resulting in 8 additional nonfatal major extracranial bleeds.¹ These benefits become more dramatic in individuals at higher risk.

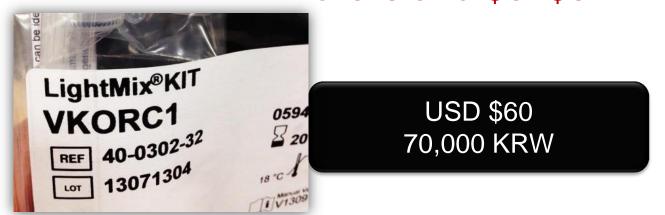
Despite the benefits of VKAs, fewer than half of eligible patients are receiving such therapy, and many are not having it optimized. A meta-analysis of trials published in the United States showed that only 55% (95% confidence interval (CI) 51–58%) of patient treatment time is within the therapeutic international normalized ratio (INR) range (TTR).² Those seen in dedicated anticoagulation ship between TTR and event rates.³ Apart from excessively elevated or depressed values, a single INR outside the therapeutic range poses little risk. However, when patients have lower TTR than desired, significant increases in major adverse events have been seen.³ Therefore, identifying strategies to optimize control of VKA therapy and potentially improve clinical outcomes is paramount.

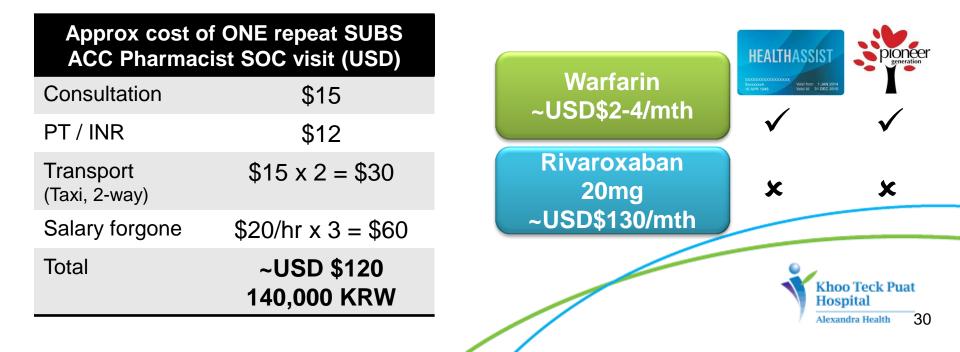
Role of pharmacogenomics in warfarin dosing

Warfarin is a racemic mixture of its *R*- and *S*-enantiomers, with *S*-warfarin having the higher potency (two- to



Baker WL, Chamberlin KW. Clinical Pharmacology & Therapeutics. 2014;96(1):17-9.


Warfarin Genotyping


Dollar\$ and cents (sense)

Warfarin Genotyping Dollars and \$en\$e

Warfarin Genotyping Era of NOACs

Limitations on NOAC use

- Renal impairment
 - CrCl <30 ml/min or ESRD dialysis
 - No reliable form of dose adj
- Valvular AF
 - Prosthetic heart valves, sigf rheumatic heart dz
- Strong CYP3A4 and P-gp inhibitors / inducers
 - Rifampicin, azole antifungals, protease inhibitors (HIV)
- When monitoring or reversal is desired
 - E.g. bleeding, bridging, poor compliance

Superiority of NOACs in reducing bleeding was diminished when center-based TTR was ≥ 66%

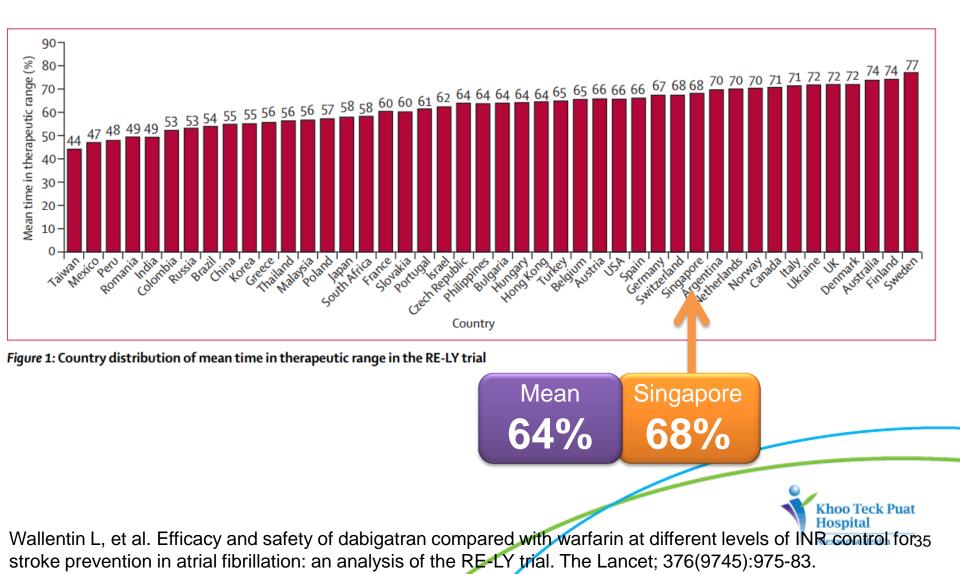
How would you re-design your study?

- Time-to-event Endpoints
 - Protocolize INR taking
 - IP every day or other day once stable
 - OP ACC appts at weekly intervals, then longer once stable

Do we still need genotyping?

- No
 - Specialized pharmacist anticoag (IPAC / ACC) appeared to perform as well
 - NOACs (and their antidotes) are on the horizon
- Yes
 - Warfarin still the most widely used anticoagulant at present
 - Special populations need warfarin

Recent Warfarin Genotyping RCTs


Summary

Characteristics	COAG (US) ¹ N = 1,015	EU-PACT (Europe) ² N = 455
Genotyping	Genetic dosing algorithm with	n clinical & genotype data
Comparator (Standard Care)	Clinical maintenance dose algorithm (age, black race, smoker, BSA, amio, target INR, DVT/PE)	Standard loading dose strategy ≤75yrs: 10, 5, 5mg >75yrs: 5, 5, 5mg f/b "local clinical practice"
Median Time to Therapeutic INR	Not reported	21 vs 29 days (p<0.001)
Median Time to Stable Dose	Not reported	44 vs 59 days (p=0.003)
Time-In- Therapeutic Range	45.2% vs 45.4% (p=0.91)	67.4% vs 60.3% (p<0.001)
Incidence of INR≥4	19.5% vs 18.4% (p=0.59)	27.0% vs 36.6% (p=0.03)



Khoo Teck Puat Hospital Alexandra Health 34

TTR Performance (RE-LY) By Geographical Region

TTR Performance (ARISTOTLE) By Geographical Region

Wallentin L et al. Efficacy and Safety of Apixaban Compared With Warfarin at Different Levels of Khoo Teck Puat Predicted International Normalized Ratio Control for Stroke Prevention in Atrial Fibrillation. Circulation and Bealth 36 2013;127(22):2166-76.

Genetic Variants Singapore vs Korea – Similarities

	Singapore Chinese	
VKORC1 (1639G>A)		
No variants/WT	3 (5.1)	70% homozygous v
Heterozygous	14 (23.7)	90% at least 1 varia
Homozygous	42 (71.2)	
CYP2C9*2		
No variants/WT	59 (100)	100% wild type
Heterozygous	0	Variants are absen
Homozygous	0	
CYP2C9*3		
No variants/WT	53 (89.8)	90% wild type
Heterozygous	6 (10.2)	10% heterozyg var
Homozygous	0	

variant ant

nt

riants

Proposal of pharmacogenetics-based warfarin dosing	
algorithm in Korean patients	

Jung Ran Choi^{1,10,11}, Jeong-Oh Kim^{1,11}, Dae Ryong Kang², Seong-Ae Yoon¹, Jung-Young Shin¹, XiangHua Zhang¹, Mee Ork Roh³, Hyung Joo Hong³, Young-Pil Wang⁴, Keon-Hyon Jo⁴, Kwang-Soo Lee⁵, Ho-Jung Yun⁶, Yong-Seog Oh⁶, Ki-Dong Yoo⁷, Hee-Gyeong Jeon⁸, Yoon Sook Lee⁹, Tae Sun Kang⁹, Hyun-Joo Park⁹, Myeon Woo Chung⁹ and Jin-Hyoung Kang^{1,3}

Warfarin is a commonly prescribed anticoagulant drug for the prevention of thromboembolic disorders. We investigated the contribution of genetic variations of four genes and clinical factors to warfarin dose requirement and provided a warfarin-dosing

Choi JR et al. J Hum Genet. 2011;56(4):290-5.

N (%)
87.4
11.7
0.9
N (%)
92.0
8.0

	VKORC1 1639	N (%)	
Pharmacogenetic distribution of warfarin and its clinical significance in Korean patients during initial anticoagulation	AA (homozyg)	89.0	
	GA (heterozyg)	11.0	
therapy	GG (wild)	0.0	
Aerin Kwon · Sang-Ho Jo · Hyoung-June Im ·	CYP2C9	N (%)	
Yun-A Jo • Ji-Young Park • Hee Jung Kang •	*1 / *1 (wild)	87.0	
Han-Sung Kim · Hyoun Chan Cho · Young Kyung Lee	*1 / *3 (het var)	11.0	
	*3 / *3 (homo var)	2.0	
Kwon A et al. J Thromb Thrombolysis. 2011;32(4):467-73.			

Similar to S'poreans (** of Chinese ethnicity

