

PCI with Polymer-free Stent

Florian Krackhardt, M.D.

Department of Cardiology Charité Campus Virchow-Klinikum University Hospital Berlin, Germany

Drug Eluting Stents: Present Coating Technology

acilitaxel

ischer, T. F. et al. Circulation 2007;115:1051-1058

CT2011

Limitations of polymer use and metallic backbones in current DES

- Stent thrombosis (late, very late) / Forced prolonged DAT duration / Bleeding / Resistance
- Delayed endothelialization
- Inflammation / Hypersensitivity
- Aneurysms
- Late catch-up
- Polymer disruption
- Remodeling (constrictive / expansive)
- Functional integrity

5

Development of DES Generations

- 1st gen: permanent polymer
- 2nd gen: improved permanent polymer
- 3rd gen: biodegradable polymer
- 4th gen: polymer-free

Drug Eluting Stents: Present Coating Technology

Target Lesion Failure (TLF) and Stentthrombosis

DES with durables Polymer

RESOLUTE All Comers-RCT-5 Years

RESOLUTE Program – 5 years

Device-Oriented (DOCE) vs. Patient-Oriented (POCE) Endpoint

- Efficiacy (TLF) and safety (5 years)
 Duarables Polymer (Fluopolymere)
- Rate of Stenthrombosis \approx 0.8-1.5%,
- Very late Stentthromboses (VLST) 50% of Stentthroboses
- 50 % of MACE rate are Patient-oriented endpoint events (POCE)

Development of DES Generations

- 1st gen: permanent polymer
- 2nd gen: improved permanent polymer
- 3rd gen: biodegradable polymer
- 4th gen: polymer-free

Stent Technology Inflammation (pig model)

EuroIntervention. 2012;8:250-7

Polymer has no function after drug release is complete

- All polymer coatings have potential to be damaged
- Damaged durable polymers are permanent

Safety	 Late / very late stent thrombosis Higher risk in certain patient populations Potentially require long-term DAPT 	
Efficacy	 Chronic inflammation with neoatherosclerosis Constant irritant may lead to late restenosis Hypersensitivity 	

Drug Eluting Stents: Biodegradable Coating Technology

Comparison of Biodegradable and Permanent Coatings

The BioMatrix Flex[™] stent with an abluminal biodegradable polymer achieved a 10 x better strut coverage and a 20 x better stent apposition vs. the Cypher[®] Select[™] stent with a symmetric durable polymer at 9 months

 TCT2011
 Barlis. et al. , Eur Heart J 31, 165-176 (2010).
 Supervision

Biodegradable polymer show less uncovered struts and malapposition

Drug Eluting Stents: Biodegradable Coating Technology

Durable biocompatible circumferential vs biodegradable abluminal Stentcoating

- No significant diferences (non-inferiority) for...
 - > Efficiacy (TLF)
 - Safety (Stentthrombosis)
- No differences in VLST
 - Very Late Stent Thrombosis, VLST)
- Theoretical superiority of a biodegradable (abluminal)
 Stentdesign especially for Stentthrombosis
 Data for this hypothesis in RCT not evident

Development of DES Generations

- 1st gen: permanent polymer
- 2nd gen: improved permanent polymer
- 3rd gen: biodegradable polymer
- 4th gen: polymer-free

PCI Market Development

Worldwide Stent Market by Segment, 2009 & 2017

"Worldwide Coronary Stents Market, 2008-2017

Growth Driver: Local Drug Delivery

- Europe 1.7 Mio DES in 2014
- PCI DES (Drug-Eluting)
- BMS stagnating (price/unit erosion)
- BVS Market Share approx. 10%, if RCT would show efficacy

Drug Coated Stents: Biodegradable Coating Technology

Drug Eluting Stents: Development in Coating Technology

Future DES Requirements

- 1. Reduction of the duration of DAPT
- 2. Lower late stent thrombosis
- 3. Improved deliverability
- 4. Better efficacy
- 5. Natural vessel restoration

4th gen: polymer-free Angioplasty

Drug coated BalloonsTo avoid unnecessary stenting
"The best stent is No Stent"
in defined indications

Scaffolds

Natural vessel restoration

Drug coated Stents

BioFreedom CoroFlex ISAR Indications ? workhorse ?

Bioresorbable Scaffolds (BVS)

Representative Human images at 5 Years

A Series of Randomized Trials Designed to:

- Demonstrate similar (non-inferior) results with ABSORB BVS compared to Xience CoCr-EES at 1 year
 - Demonstrate superior results with ABSORB BVS compared to Xience CoCr-EES between 1 and 5 years

Metallic DES¹

Absorb-Treated Artery²

Bioresorbable Scaffolds (BVS) ABSORB III Results due to lumen diameter

Bioresorbable Scaffolds (BVS)

One year Meta-Analysis: ABSORB II, ABSORB III, ABSORB Japan, ABSORB China

2003

1150

DoCE (TLF): Cardiac Death, MI or ID-TLR (pooled) 20% Absorb BVS (n=2161) Target lesion failure (%) XIENCE CoCr-EES (n=1223) 15% Difference [95%CI] = 1.2% [-0.4%, 2.7%] HR [95%CI] = 1.25 [0.92,1.70] 10% **=0.16** 6.0% 5% 4 0% 0% 2 11 12 0 g 10

Months Post Index Procedure

2037

1174

2022

1161

Myocardial Infarction (pooled)

Device Thrombosis (Def/Prob) (pooled)

Number at risk

XIENCE CoCr-EES

Absorb BVS

2161 2065

1223 1188

	BVS (N=2164)	CoCr-EES (N=1225)	RR [95% CI] Fixed effect	P Value	 2	P het
Device thrombosis (def/prob)	1.3%	0.6%	2.09 [0.92, 4.75]	0.08	0%	0.40
- Definite	1.1%	0.5%	2.06 [0.85, 5.03]	0.11	0%	0.84
- Probable	0.2%	0.1%	2.28 [0.28, 18.51]	0.44	NA	NA
- Early (0-30 days)	0.9%	0.5%	1.76 [0.72, 4.34]	0.22	0%	0.70
- Late (30 days - 1 year)	0.4%	0.1%	4.10 [0.52, 32.56]	0.18	NA	NA

Non significant higher rate of stent thrombosis For scaffolds independent of DAPT Duration

- Non-complex and moderat complex lesions and ACS coparable results of BVS compared to a second generation DES
- > One-Year: POCE und DOCE no difference
- Safety: Non-significant differences
- > Higher MACE Rate in small vessels

LEADERSFREE

Biolimus-Coated vs. Bare-Metal Coronary Stents in High Bleeding Risk Patients

Philip Urban, Alexandre Abizaid, Ian T. Meredith, Stuart J. Pocock, Didier Carrié, Christoph Naber, John Gregson, Samantha Greene, Hans Peter Stoll and Marie-Claude Morice for the LEADERS FREE Investigators

Drug Coated Stent - Biofreedom

BioFreedom[™] Drug Coated Stent (C S)

Selectively Micro-Structured Surface Holds Drug in Abluminal Surface Structures

Potential Advantages:

- ✓ Avoid any possible polymer-related adverse effects
- ✓ Rapid drug transfer to vessel wall (98% within one month²)
- ✓ Safe to shorten DAPT?

High Bleeding Risk Patients (HBR)

- Mostly excluded from device and APT trials
- Never specifically studied
- Current guideline recommendations:
 - BMS + one month DAPT
 - DES + "shortened" DAPT

Drug Coated Stent - Biofreedom

LEADERS FREE Trial Design

Prospective, double-blind randomized (1:1) trial 2466 High bleeding risk (HBR) PCI patients

DAPT mandated for 1 month only, followed by long-term SAPT

- Primary safety endpoint: Composite of cardiac death, MI, definite / probable stent thrombosis at 1 year (non-inferiority then superiority)
- Primary efficacy endpoint: Clinically-driven TLR at 1 year (superiority)

Drug Coated Stent - Biofreedom

Components of Safety Endpoint

Primary Safety Endpoint (Cardiac Death, MI, ST)

Selected Secondary Safety Endpoints

- First study patients with high bleeding risk
- Excluded in most RCT
- The Biolimus-Drug-Coated-Stent-Design is more
 - effective and safe compared to BMS

The NEW ENGLAND JOURNAL of MEDICINE

LEADERS FREE published online October 14, 2015

Matrix

100% Polymer-Free Sirolimus Drug Delivery
 Probucol as Matrix-Builder, to retard the release of Sirolimus over time
 Abluminal coating for effective drug release
 Release kinetics equal to Cypher-stent

Clinical Evidence

- Sirolimus, one of the best approved drugs ever
- Clinical endpoint trial ISAR Test 5 (incl. long-term results)
 - Safe reduction of unwanted cell proliferation
- Efficacy and Safety Profile like the latest generation Resolute Integrity

Stent Performance

- High Flexibility due to Coroflex Blue Neo & Ultra stent platform
 - Lowest Crossing Profile (0.79 0.93 mm)
 - Lowest stent strut thickness (50/60 μm)
 - Complete Portfolio (incl. 2.0, 2.25 mm up to 32mm length)

Do newer generation stents have lower strut thickness?

Durable Polymer Coated Stents			Bioabsorbable Polymer Coated Stents			Bio- absorbable Scaffold	Polymer- Free Coated Stent
Xience Prime™	PROMUS Element™	Resolute Integrity™	Orsiro™	SYNERGY™	BioMatrix Flex [™]	Absorb BVS	Coroflex [®] ISAR
		Strut 7	hickness (nominal and	measured)		
81 μm (0.0032")	81 μm (0.0032")	89 μm (0.0035") 100 μm	60 μm (0.0024") 67 μm	74 μm (0.0029")	120 μm (0.0047") 117 μm	150 μm (0.0059") -	50/60 μm (0.0020"/ 0.0024")
		Coating	Thickness	(nominal an	d measured)		
Conformal 8µm / side 4 - 10 µm	Conformal 8µm	Conformal 6µm / side 5 - 38 µm	Asymetr. 7μm 7 - 9 μm	Abluminal 4µm	Abluminal 10µm 10 - 25µm	Conformal 3µm	Abluminal 4 µm
Content (nominal)							
Everolimus 100 µg/cm²	Everolimus 100 µg/cm²	Zotarolimus 160 µg/cm ²	Sirolimus 140 µg/cm²	Everolimus 16 µg/mm²	Biolimus A9 15.6 µg/mm²	Everolimus 98 µg/cm²	Sirolimus 120 µg/cm²

Source: R&D, internal tests

Clinical Trial ISAR Test 5

CHARITÉ

ISARSTENT: Clinical Evaluation ISAR Test 5

Final Five-Year Follow-Up of Polymer-Free Sirolimus- and Probucol-Eluting Stents vs. New Generation Zotarolimus-Eluting Stents in Patients with Coronary Artery Disease

The Intracoronary Stenting and Angiographic Results: Test Efficacy of Sirolimus- and Probucol- and Zotarolimus- Eluting Stents (ISAR-TEST 5) Trial R.A. Byrne, S. Kufner, J. Sorges, J. Repp, S. Cassese, T. Ibrahim, K.-L. Laugwitz, A. Kastrati

Deutsches Herzzentrum München, Technische Universität München; 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München; Munich, GERMANY

Background

ISAR-TEST 5 was a large-scale randomized trial which demonstrated the non-inferiority of a polymer-free dual-drug sirolimus- and probucol-eluting stent (Dual-DES) compared to a new generation durable polymer zotarolimus-eluting stent (ZES) in 3002 randomized patients at 1-year follow-up. Long-term follow-up is required to determine durability of efficacy and to investigate the hypothesized late performance advantage of polymer-free DES.

The aim of the present analysis was to evaluate clinical outcomes at 5 years.

Methods

A total of 3002 patients undergoing percutaneous coronary intervention were randomly assigned to treatment with a polymerfree sirolimus- and probucol-euting stent (backbone Translumina, Hechingen, GERMANY; n=2002) versus a ZES stent (Endeavor Resolute, Medtronic Vascular, Santa Rosa, Ca., USA; n=1000). There were minimal exclusion criteria. Clinical follow-up was performed to 5 years post enrolment.

The primary endpoint was the combined incidence of cardiac death, target-vessel-related myocardial infarction (MI) or target lesion revascularization. Secondary endpoints comprised the composite of death or any MI, target lesion revascularization and definite or probable stent thrombosis. The primary endpoint will also be evaluated in pre-defined sub-groups according to sex, age, reference vessel diameter and diabetes.

NOTE: The probucol- and sirolimus-eluting Dual-DES is commercially-available as the Coroflex-ISAR DES (B. Braun Melsungen AG, Melsungen, GERMANY).

DISCLOSURES: RAB reports lecture fees from B. Braun Melsungen AG and Biotronik. AK reports speakers fees for MSD and patent applications in respect of drug-eluting stent coatings

Results			
Baseline	charac	teristic	s
	Dual- DES	Resolute ZES	P- value
Age (years)	67.7±11.2	68.1±10.8	0.30
Female	470 (23.5)	237 (23.7)	0.89
Diabetes meilitus	575 (28.7)	295 (29.5)	0.66
Insulin-dependent	197 (9.8)	109 (10.9)	0.37
Hypertension	1336 (66.7)	666 (66.6)	0.94
Hyperlipidemia	1257 (62.8)	650 (65.0)	0.24
Current smoker	357 (17.8)	166 (16.6)	0.40
Prior myooardial	586 (29.3)	299 (29.9)	0.72
Infarction			
Prior bypass surgery	188 (9.4)	96 (9.6)	0.85
Multivessel disease	1658 (82.3)	855 (85.5)	0.06
Clinical presentation			0.60
aoute myooardial			
Infarction	215 (10.7)	96 (9.6)	
unstable angina	596 (29.8)	325 (32.5)	
stable angina	1191 (59.5)	579 (57.9)	
Multilesion Intervention	715 (35.7)	378 (37.8)	0.26
Ejection fraction (%)*	52.6±11.9	52.4±11.4	0.74
Target vessel			0.55
left anterior descending	1315 (45.2)	666 (45.0)	
left olroumflex	711 (24.4)	386 (26.1)	

Results for the primary endpoint were consistent across pre-specified subgroups of age, sex, presence or absence of diabetes mellitus and vessel size.

Conclusion

In the setting of a large-scale clinical trial with broad inclusion criteria both the polymer-free sirolimus- and probucol-eluting stent and the new generation durable polymer zotarolimus-eluting stent showed durable efficacy and high safety out to 5 years. In terms of stent thrombosis rates were low and comparable in both groups with few events beyond 1 year.

Clinical Trial ISAR Test 5

Cardiac death, target-vessel MI, target lesion revascularization, %

Durable efficiacy and high safety out to 5 years Low stent thrombosis rates and comparable data to second generation DES

MATRIX COATING TECHNOLOGY

Polymer-Free Matrix Coating Technology

- The Coroflex ISAR stent is covered with a Sirolimus containing matrix, which consists in equal shares (1:1) of the drug Sirolimus (active agent) and Probucol (excipient - matrix builder)
- Probucol is used as an hydrophobic, antioxidantic excipient. The release of Sirolimus is controlled by the Probucol. Probucol is needed to bind the drug on the stent and to facilitate a controlled & continuous drug release.
- Probucol mimics the function of a polymer by retarding the release of Sirolimus over a time period of several weeks
- The drug load is 1.2µg/mm² Sirolimus
- The Matrix Coating is applied only on the abluminal Coroflex ISAR stent surface for improved endothelial healing

Coroflex® ISAR Abluminal, Polymer-Free Drug Delivery

Coroflex ISAR Drug Release Kinetics

Sirolimus release as function of the Sirolimus: Probucol ratio in the coating of Coroflex ISAR

The 50:50 ratio corresponds to the drug release of the Cypher stent without using a non-degradable polymer!

Endothelialization of the luminal Stentsurface

Improved endothelial healing due to the absence of a polymer-carrier

EM of a Genous stent at 48 hours following stenting shows complete coverage of the stents by endothelium (left). The detail (right) shows leucocyte adherence and incomplete cell-cell contact.

Pre-clinical results at 28 days:

28 days	Neointimal thickness (mm)	Inflammation score (0-3)	Injury score _(0-3)	Endotheliali- zation (%)
Coroflex® ISAR	0.17 ±0.09	0.0 ±0.0	0.4 ±0.3	(98.8 ±1.7
Cypher	0.19 ±0.07	0.1 ±0.2	0.6 ±0.3	87.2 ±32.8
Coroflex ISAR (without drug)	0.21 ±0.13	0.3 ±0.7	0.3 ±0.2	99.6 ±0.5

Coroflex® ISAR

Cypher

Proven Inhibition of neointimal growth

Intravascular Imaging - OCT

Hyperplasia of neointima

Uncovered struts

Coroflex® ISAR OCT

OCT post-PCI

OCT 6 weeks later

Coroflex ISAR 2.75, LAD-7

75 years old patient

ISAR-DAPT STUDY – KOREA

A Comparative Evaluation of Efficacy and Safety in the 3-Months DAPT Group

vs. the 6-Months DAPT Group of Patients Treated with the Coroflex ISAR Stent;

A Prospective, Multicenter, Randomized, Open-Label Clinical Trial

	(Korean) ISAR-DAPT: Coroflex ISAR 스텐트를 시술 받은 환자를 대상으로 이중항혈소판제 복용			
	기간에 따른 효과와 안전성을 비교 평가하기 위한 다기관, 전향적, 무작위 배정 임상시험			
Research Title	(English) ISAR-DAPT: A Comparative Evaluation of Efficacy and Safety in the 3-Months			
	DAPT Group vs. the 6-Months DAPT Group of Patients Treated with the Coroflex ISAR			
	Stent; A Prospective, Multicenter, Randomized, Open-Label Clinical Trial			
	This clinical trial studies patients treated with the Coroflex ISAR Stent for coronary artery			
Objective	disease in order for the objective of verifying the non-inferiority of results that among			
Objective	patients who were administered DAPT for 3 months compared to patients who were			
	administered DAPT for 6 months, in terms of the efficacy and safety of DAPT.			
Principal	Aiou University Hespital Department of Cardiology Professor Myeong He Veen			
Investigator	Ajou oniversity hospital Department of Cardiology Professor Myeong-no foon			
Clinical Trial Design	Multicenter, prospective, randomized clinical trial			
b				
Research Instituti	ion Ajou University Hospital			

Principal	Department of Cardiology Professor Myeong-Ho Voon
Investigator	Department of Cardiology Professor Myeong-no room

ISAR-DAPT STUDY – KOREA

Coroflex[®] ISAR Registry

Coroflex[®] ISAR Registry Update November 2015

Objective	The aim of the study is to assess the safety and efficacy of elective deployment of the Sirolimus-eluting Coroflex ISAR Stent TM in the treatment of "real world" de-novo and restenotic lesions after stand-alone angioplasty in coronary arteries between ≥ 2.0 mm and ≤ 4.0 mm in diameter of less or equal than 30 mm in length for procedural success and preservation of vessel patency.
Study Design	The Coroflex ISAR Registry is an international, multi-center 'all comer'/ 'real world' registry
Number of patients	Minimum of 20 patients per center.
Target patient recruitment	>2000 pts.
Selection criteria	No patient exclusion criteria except patients with contraindications for dual anti-platelet therapy
Primary endpoint	Clinically driven target lesion revascularization rate (TLR) at 9 months
Secondary endpoints	Success of stent deployment Acute MACE rate Cumulative MACE (TLR, cardiac death, MI) rate at 9 months
Scheduled follow-up	Clinical follow-up scheduled at 9 months for all patients

Coroflex[®] ISAR Registry

Variable	all patients	non 32 mm stents	32 mm only	p-value
Number of patients	2250	2000	250	-
Number of lesions	2871	2551	320	
Age (years)	64.0 ± 11.7	64.4 ± 11.7	61.2 ± 10.7	<0.001
Male gender	1695 (75.3%)	1495 (74.8%)	200 (80.0%)	0.069
Diabetes	863 (38.4%)	745 (37.2%)	118 (47.2%)	0.002
Hypertension	1559 (69.3%)	1383 (69.2%)	176 (70.4%)	0.686
End stage renal disease	99 (4.4%)	93 (4.6%)	6 (2.4%)	0.102
STEMI	412 (18.3%)	359 (18.0%)	53 (21.2%)	0.396
NSTEMI	502 (22.3%)	445 (22.2%)	57 (22.8%)	
no MI	1336 (59.4%)	1196 (59.8%)	140 (56.0%)	

Coroflex[®] ISAR Registry

Variable	all patients	non 32 mm stents	32 mm only	p-value
Number of patients	322	274	48	
accumulated 9-month MI	5 (1.6%)	4 (1.5%)	1 (2.1%)	<u>0.747</u>
accumulated 9-month TLR	4 (1.2%)	4 (1.5%)	0 (0.0%)	<u>0.400</u>
accumulated 9-month cardiac death	6 (1.9%)	5 (1.8%)	1 (2.1%)	<u>0.901</u>
accumulated 9-month MACE	11 (3.4%)	10 (3.6%)	1 (2.1%)	<u>0.532</u>

The registry is still ongoing, the number of available 9-month follow-up is limited. Accumulated 9-MACE rate of 2.1%.

Most importantly, there was no difference in terms of accumulated MACE at 9 months between the two patient groups who have received either the 32 mm stents or the shorter versions (p=0.532).

This is a important finding based on the fact the lesions treated with the longer lesions were more complex and the patients had more pronounced cardiovascular risk factors

Conclusion

Solution Oriented Polymer-Free Angioplasty

DES:	"The workhorse"	Coroflex-ISAR DCS
DCB:	To avoid unnecessary stenting "The best stent is No Stent" in-Stent-Restenosis small vessel disease side branch treatment	
Scaffold:	natural vessel restoration Younger patients Diabetic patients long stent distance ACS	Polymer-Free Angioplasty
DCS	shorter DAPT duration older patients patients with higher bleeding risk Patient with indication for non cardiac surgery	

Thank you very much for your attention.