## Excimer Laser angioplasty for femoro-popliteal disease

Sendai Kousei Hospital, Tokyo Kamata Hospital Naoto Inoue MD, FSCAI, FJCC, FAHA



#### **Speaker's name: Naoto Inoue**

**I have the following** potential conflicts of interest to report:

Research contracts
Consulting- Kaneka, Tokai-Medical
Employment in industry
Stockholder of a healthcare company
Owner of a healthcare company
Other(s)

**I** I do not have any potential conflict of interest





## **The XeCl Excimer Laser** (The Cool Laser)

#### **The Cool Laser**

#### **Dissolves tissue** without burning

#### **The Hot Laser**

Heat intensive process burns tissue

## **Photochemical**



-UV light pulse hits tissue
-125 nanosecond duration
-100 microns penetration
-billions of tissue bonds fracture per pulse

## Photothermal

-absorption creates molecular *vibration* in tissue

-vibration of molecules *heats* intracellular water

-steam forms expanding vapor bubble



## **Photomechanical**

-expansion and collapse of vapor bubble breaks down tissue and sweeps debris away from tip

-debris is water,gas, small particles (90% < 10 microns)

-ablation depth >> 10 microns per pulse

-entire process time per pulse is 500 millionths of a second



### Thrombus

120-500 us



## Laser angioplasty in PAD

Laser+balloon angioplasty for de novo lesion?



## Laser angioplasty in PAD



Laser Guide Catheter with Laser Atherectomy Catheter







### Laser+balloon angioplasty for de novo lesion





### Laser+balloon angioplasty for de novo lesion





### **CELLO** trial



**JCR201**′

## Efficacy of laser in PAD

Thrombotic lesion

### Calcified lesion



• Below the knee

## Thrombotic occlusion due to AF



### Thrombotic occlusion due to AF



7F 1.7 Turbo booster

### Post adjunctive ballooning

## Efficacy of laser in PAD

#### Thrombotic lesion

### Calcified lesion



Below the knee

## Calcified CFA



#### 1.7mm Laser

## Calcified CFA



Turbo booster



## Calcified CFA





Adjunctive ballooning



## Efficacy of laser in PAD

Thrombotic lesion

### Calcified lesion

### • <mark>ISR</mark>

Below the knee

### Turbo Booster for long stent occlusion





### Turbo Booster for long stent occlusion



Post laser catheter

#### Post adjunctive ballooning

# SFA Trials Show Restenosis / Loss of Patency is an Issue for All Stents

SFA Stent Trials



#### Results May Be Understated

- 1. Are these "real-world" patient sets with inclusion of
  - Long lesions
  - Multiple stents
  - Repeat ISR
  - Severity of underlying disease
- 2. Has disease stabilized at 2 years or will restenosis continue?







### **Atherectomy Treatment Options**<sup>19-21</sup>

|                                           | ISR Indication  | Low Risk of Stent<br>Interaction | Low Risk of<br>Embolization                               |
|-------------------------------------------|-----------------|----------------------------------|-----------------------------------------------------------|
| Turbo-Power<br>Laser Atherectomy Catheter | ✓               | <b>v</b>                         | ✓                                                         |
| SilverHawk                                | Contraindicated | X                                | <b>X</b><br>Ablation vs.<br>Displacement/Dis<br>lodgement |
| Diamondback                               | Contraindicated | X                                | <b>X</b><br>Ablation vs.<br>Displacement/Dis<br>lodgement |
| Jetstream                                 | Not indicated   | X                                | <b>X</b><br>Ablation vs.<br>Displacement/Dis<br>lodgement |

According to FDA Guidance, contraindicated device *should not* be used, as the risk of use clearly outweighs any benefit



### Advantage of Laser for ISR

**Difficult to Cross** the entire segment with a wire The wire frequently exists through the stent struts **Too much tissue** to be displaced by balloon dilatation Need to treat w/o disturbing the underlying stent Need to avoid distal embolization



### Designed for Real-World ISR CHALLENGING CONDITIONS

- Long stents
- Multiple stents
- Common stent fractures (Grades 1-3)

- Key Inclusion Criteria
  - ISR lesion ≥ 4 cm
  - Rutherford classification 1-4
  - − RVD  $\ge$  5.0 mm and  $\le$  7.0 mm
  - $\ge 1$  patent tibial artery
- Key Exclusion Criteria
  - Target lesion extends > 3 cm beyond stent margin
  - Untreated inflow lesion
  - Grade 4 or 5 stent fracture
- Follow-up
  - Discharge, 30 days, 6 months and 1 year post-procedure



### Designed for Real-World ISR SICK PATIENTS

- Elderly patients
- High rates of diabetes, hypertension, & CAD
- 1/3 had <u>recurrent</u> ISR

|                   | ELA + PTA<br>(N=169) | PTA Alone | P-value |  |  |  |
|-------------------|----------------------|-----------|---------|--|--|--|
| Age (mean)        | 68.5                 | 67.8      | 0.60    |  |  |  |
| Male              | 62.7%                | 61.7%     | 0.89    |  |  |  |
| Hypertension      | 95.8%                | 93.8%     | 0.53    |  |  |  |
| Hyperlipidemia    | 96.4%                | 95.0%     | 0.73    |  |  |  |
| Diabetes Mellitus | 47.0%                | 47.5%     | 1.00    |  |  |  |
| CAD               | 64.3%                | 68.8%     | 0.57    |  |  |  |
| Previous ISR      | 32.57%               | 30.0%     | 0.77    |  |  |  |
| Smoking           | 85.0%                | 91.3%     | 0.23    |  |  |  |
| CLI               | 16.0%                | 12.3%     | 0.57    |  |  |  |
| Claudicants       | 84.0%                | 87.7%     | 0.57    |  |  |  |

Patient Demographics



### Designed for Real-World ISR CHALLENGING LESIONS

- Among longest lesions studied in any SFA trial
- 20% of lesions > 30 cm
- 1/3 total occlusions
- Laser treated significantly more calcified lesions/arteries
   ♦ Difference due to statistical chance, not design

#### Third-Party Angiographic Core Lab Assessment Baseline Lesion Characteristics

|                         | ELA + PTA<br>(N=169) | PTA Alone<br>(N=81) | P-value |
|-------------------------|----------------------|---------------------|---------|
| Mean Lesion Length (cm) | 19.6                 | 19.3                | 0.85    |
| Diameter Stenosis (%)   | 81.7%                | 83.5%               | 0.42    |
| Popliteal Lesion        | 21.3%                | 23.4%               | 0.923   |
| Total Occlusion         | 30.5%                | 36.8%               | 0.37    |
| Calcium (Mod/Sev)*      | 27.1%                | 9.1%                | 0.002   |
| Stent Fracture          |                      |                     | 0.08    |
| None                    | 85.8%                | 95.8%               |         |
| Type 1 or 2             | 11.4%                | 4.2%                |         |
| Type 3, 4 or 5          | 2.8%                 | 0.0%                |         |

\* Calcium Grade: **0** - No calcification; **1** - Superficially localized non-confluencing wall calcifications, < 5 mm on fluoroscopy; **2** - Confluencing calcifications > 5 mm, including multiple deposits, not involving the whole vessel diameter in angiographic working projection; **3** - Confluencing calcifications filling up the whole vessel diameter.



### Superiority in Freedom from TLR Consistent Throughout Follow-up Period

**Freedom From Target Lesion Revascularization** 





## Efficacy of laser in PAD

Thrombotic lesion

### Calcified lesion



• Below the knee







## **BK** lesion

Kissing balloon 2.5x100mm 2.5x40mm



#### Limb Salvage Following Laser-Assisted Angioplasty for Critical Limb Ischemia: Results of the LACI Multicenter Trial

John R. Laird, MD<sup>1</sup>; Thomas Zeller, MD<sup>2</sup>; Bruce H. Gray, DO<sup>3</sup>; Dierk Scheinert, MD<sup>4</sup>; Mitar Vranic, DO<sup>5</sup>; Christopher Reiser, PhD<sup>6</sup>; and Giancarlo Biamino, MD<sup>4</sup> for the LACI Investigators



### 0.9 TURBO ELITE



OPTIMIZED ABLATION

EFFICIENCY AND ENERGY OUTPUT

More active area, more energy, and increase in penetration rate compared to previous laser ablation technology.

IMPROVED

Enhanced guidewire movement with new PTFE inner lumen.

#### IMPROVED OUTER JACKET

More robust outer jacket facilitates advancement. \* Software upgraded

IMPROVED OUTER JACKET More subust exter jacket familiates edvencement CONTINUOUS "ON" FUNCTIONALITY More efforent elitation in tougher festions has some in fibrotic or soliciting material. No toccod incose agoste factor procedure

> IMPROVED INNER LUMEN Enhanced guidewire movement with new PTFE inner lumen

Tetal occlusion SFA with diffuse disease and calcification

Post 2.3 TURBO elite laser ablation



Complement contrary of De Probade Maillone HDL FACC Community Harpitele, Massime, 20 Semantin, M. Sach R. provide Landowski, R. provide

HYDROPHILIC COATING

OPTIMIZED ABLATION EFFICIENCY AND ENERGY OUTPUT

More active area, more energy, and increase in penetration rate compared to previous laner ablation technology.



### **Penetration of calcium**

#### Human cadaver calcified plaque, 1 mm thick



1.4 mm catheter, 60/40, 65 seconds 0.9 mm catheter, 80/80, 33 seconds

### 0.9 (80/80) Laser is not almighty

#### Severe calcified lesion-Balloon uncrossable lesion

#### 0.9 Laser unable to cross



# **Distal bypass**

## Perforation due to deep ablation

## Laser perforation



#### 2.0mm Laser



## Laser perforation





### Conclusions

Laser is the assisted device to facilitate balloon response

 ISR is the ideal indication of laser compared to other debulking devices

Laser can ablate moderate calcification but dose not work in the severe calcified lesion

Careful selection of laser size and power are needed to prevent perforation

# Thank you!