OCT-guided PCI Comparison with IVUS-guided

Takashi Akasaka, MD, PhD, FESC Department of Cardiovascular Medicine Wakayama Medical University

JCR
Busan, 12.09.2017

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support : Abbott Vascular Japan Boston Scientific Japan Goodman Inc.
St. Jude Medical Japan
Terumo Inc.
- Consulting Fees/Honoraria : Daiichi-Sankyo Pharmaceutical Inc. Goodman Inc.
St. Jude Medical Japan Terumo Inc.

IVUS- vs. angio-guided PCI with DES

In assessment of dual antiplatelet therapy with drug-eluting stent (ADAPT-DES) substudy, IVUS guidance compared with angiography in 8,583 'all-comers' pts at 11 international centers.

Conclusion: Compared with angiography, IVUS guidance reduces ST in addition to MI and MACE within 1 year after DES implantation.

How IVUS changed the procedure in ADAPT-DES substudy

(\%) Larger Size of

IVUS changed the procedure 74\% of the time.

IVUS- vs. angio-guided PCI with DES A meta-analysis

 of randomized trials and observational studies

 of randomized trials and observational studies}

IVUS-guided DES implantation is associated with significantly lower rates of adverse clinical events compared with angiography guidance.

Intracoronary imaging \& physiology in ESC guideline 2014

Recommendations	Class $^{\text {a }}$	Level $^{\text {b }}$	Ref. $^{\text {c }}$
FFR to identify haemodynamically relevant coronary lesion(s) in stable patients when evidence of ischaemia is not available.	I	A	$50,51,713$
FFR-guided PCI in patients with multivessel disease.	Ila	B	54
IVUS in selected patients to optimize stent implantation.	Ila	B	$702,703,706$
IVUS to assess severity and optimize treatment of unprotected left main lesions.	Ila	B	705
IVUS or OCT to assess mechanisms of stent failure.	Ila	C	
OCT in selected patients to optimize stent implantation.	IIb	C	

Eur Heart J. 2014;35:2541-2619

OCT- vs. angio-guided PCI with DES or BMS

The retrospective Centro per la Lotta contro I'InfartoOptimisation of Percutaneous Coronary Intervention (CLI-OPCI) study

Events at 1-year follow-up	Angiographic guidance group (n=335)	Angiographic plus 0CT guidance group (n=335)	p-value
Death	$23(6.9 \%)$	$11(3.3 \%)$	0.035
Cardiac death	$15(4.5 \%)$	$4(1.2 \%)$	0.010
Myocardial infarction	$29(8.7 \%)$	$18(5.4 \%)$	0.096
Target lesion repeat revascularisation	$11(3.3 \%)$	$11(3.3 \%)$	1.0
Definite stent thrombosis	$2(0.6 \%)$	$1(0.3 \%)$	1.0
Cardiac death or myocardial infarction	$43(13.0 \%)$	$22(6.6 \%)$	0.006
Cardiac death, myocardial infarction, or repeat revascularisation	$50(15.1 \%)$	$32(9.6 \%)$	0.034

The use of OCT can improve clinical outcomes of patients undergoing PCI.

Prati F, et al., EuroIntervention 2012;8:823-829

Comparison of measurements (OCT, IVUS \& QCA) (OPUS-CLASS study)

European Heart Journal - Cardiovascular Imaging doi:10.1093/ehjci/jev229

Multi-laboratory inter-institute reproducibility study of IVOCT and IVUS assessments using published consensus document definitions

Abstract

Edouard Gerbaud ${ }^{1}$, Giora Weisz ${ }^{2,3}$, Atsushi Tanaka ${ }^{1}$, Manabu Kashiwagi ${ }^{1}$, Take Aims The aim of this study was to investigate the reproducibility of intravascular optical coherence tomography (IVOCT)

\section*{Meli:}

Mire

\section*{Akik} assessments, including a comparison to intravascular ultrasound (IVUS). Intra-observer and inter-observer variabilities of IVOCT have been previously described, whereas inter-institute reliability in multiple laboratories has never been systematically studied.

\section*{Methods} and results

In 2 independent laboratories with intravascular imaging expertise, 100 randomized matched data sets of IVOCT and IVUS images were analysed by 4 independent observers according to published consensus document definitions. Intraobserver, inter-observer, and inter-institute variabilities of IVOCT qualitative and quantitative measurements vs. IVUS measurements were assessed. Minor inter- and intra-observer variability of both imaging techniques was observed for detailed qualitative and geometric analysis, except for inter-observer mixed plaque identification on IVUS ($\kappa=0.70$) and for inter-observer fibrous cap thickness measurement reproducibility on IVOCT (ICC $=0.48$). The magnitude of inter-institute measurement differences for IVOCT was statistically significantly less than that for IVUS concerning lumen cross-sectional area (CSA), maximum and minimum lumen diameters, stent CSA, and maximum and minimum stent diameters $(P<0.001, P<0.001, P<0.001, P=0.02, P<0.001$, and $P=0.01$, respectively). Minor interinstitute measurement variabilities using both techniques were also found for plaque identification. | Conclusion | In the measurement of lumen CSA, maximum and minimum lumen diameters, stent CSA, and maximum and minimum stent |
| :--- | :--- |
| diameters by analysts from two different laboratories reproducibility of IVOCT was more consistent than that of IVUS. | |

Definition of incomplete stent appostion (ISA)

ISA was defined as a ISA distance of $>100 \mu \mathrm{~m}$ in EES and $>170 \mu \mathrm{~m}$ in SES.

ROC curve analysis of maximum ISA distance for predicting persistent ISA (Subanalysis of RESET study)

ROC curve analysis identified a maximum ISA distance of EES $>355 \mu \mathrm{~m}$ with as separating persistent from resolved ISA (sensitivity 100\%, specificity 75%, area under the curve $=0.905$; $95 \% \mathrm{Cl}, 0.812$ to 0.999).

SES

1-Specificity
ROC curve analysis identified a maximum ISA distance of SES $>285 \mu \mathrm{~m}$ with as separating persistent from resolved ISA (sensitivity 93\%, specificity 80%, area under the curve $=0.947$; $95 \% \mathrm{Cl}, 0.878$ to 1.015).

Shimamura K. et al, Eur Heart J CV Imaging 2015;16:23-28

New Development in OCT

3-D reconstruction and auto-demonstration of incomplete apposition of stent can be demonstrated as fly through image by new OCT.

Broken calcium plate
Post-high pressure ballooning ${ }^{\text {tan }}$ $100 \mu \mathrm{~m}$

Broken calcium plate

Broken calcium plate

$100.1 \mathrm{~mm}[100.1 \mathrm{~mm}]$

Broken calcium plate

Broken calcium plate

Malapposesd distance $=400 \mu \mathrm{~m}$ Stent area $=5.5 \mathrm{~mm}^{2}$ | STC | |
| :--- | :--- |
| | |
| | Cain: |
| Contrast: | |
| Gamma: | |

Stent malappsoition

$\stackrel{10}{10}$

$145.6 \mathrm{~mm}[145.6 \mathrm{~mm}]$

Stent expansion at post-PCI

Minimum stent area

Stent expansion index

Minimum stent area and stent expansion index were significantly greater in the group with calcium fracture compared with the group without calcium fracture.

Restenosis and TLR at 10 months follow-up

Binary restenosis

Target lesion revascularization

The frequency of binary restenosis and target lesion revascularization was significantly lower in the group with calcium fracture compared with the group without calcium fracture.

Prediction of calcium plate fracture by ballooning

OFDI was performed to assess vascular response immediately after high pressure ballooning in 61 patients with severe calcified coronary lesion.

Thickness distribution of calcium fracture

Median $=450 \mu \mathrm{~m}$; Lower quartile $=300 \mu \mathrm{~m}$; Upper quartile $=660 \mu \mathrm{~m}$; Minimum $=110 \mu \mathrm{~m}$; and Maximum = $770 \mu \mathrm{~m}$.

1-Specificity
Conclusion: A calcium plate thickness < $505 \mu \mathrm{~m}$ was the corresponding cut-off value for predicting calcium plate fracture by high pressure ballooning.

The OPINION study design

Prospective, multi-center ($\mathrm{n}=42$), randomized (1:1) noninferiority trial comparing OFDI-guided PCI with IVUS-guided PCI

How to identify reference segments; stent length

Wakayamna Medicall Universituy

How to identify the EEL; stent diameter

Walkayama Medical Universitivy

Precursor lesion of stent edge restenosis

In 744 stent (EES) edge segments, OCT was used to evaluate morphological characteristics of the coronary plaques that developed stent edge restenosis.

(A) Immediately after EES implantation, OCT images showed lipid rich plaque at the proximal stent edge (a, b).
(B) At 10-month follow-up, angiography demonstrated stent edge restenosis at the proximal edge of the stent.

Conclusion: Lipidic plaque in the stent edge segments at post- PCI was a predictor of late stent edge restenosis.

Relation between lipid arc in stent edge at the time of PCI \& frequency of SER at 9-12 months follow-up

Within lepidic plaques, stent edge restenosis could be identified more frequently in cases with grater lipid arc at the stent edge.

Multivariate logistic regression analysis of independent predictors for stent edge restenosis

	Odds ratio	$95 \% \mathrm{CI}$	p-value
Lipidic plaque in stent edge segment	5.99	$2.89-12.81$	<0.001
Tissue protrusion	1.58	$0.53-4.05$	0.384
Stent area at stent border	1.12	$0.81-1.51$	0.487
Minimum lumen area	0.642	$0.42-0.96$	0.029
Ratio of stent area at stent border to averaged lumen 1re in stent edge segment	0.58	$0.11-2.62$	0.491

Post-PCI assessment, \#6 90\%, (MultiLink $4.0 \times 15 \mathrm{~mm}$)

U月

Segmented view

Wakayamna Medifoal Universitity

OFDI and IVUS criteria of optimal stent deployment

TVF

Kubo T, Akasaka T, et al. Eur Heart J. 2017;38:accepted Wakayama Medicall Universinty

MACE, TVR, CVI and RF

MACE (Cardiac death, MI, TLR)

TVR

IVUS群 40
375
291

Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results

Takashi Kubo ${ }^{1}$, Toshiro Shinke ${ }^{2}$, Takayuki Okamura ${ }^{3}$, Kiyoshi Hibi ${ }^{4}$, Gaku Nakazawa ${ }^{5}$, Yoshihiro Morino ${ }^{6}$, Junya Shite ${ }^{7}$, Tetsuya Fusazaki ${ }^{6}$, Hiromasa Otake ${ }^{2}$, Ken Kozuma ${ }^{8}$, Tetsuya loji ${ }^{9}$, Hideaki Kaneda ${ }^{9}$, Takeshi Serikawa ${ }^{10}$, Toru Kataoka ${ }^{11}$, Hisayuki Okada ${ }^{12}$, and Takashi Akasaka ${ }^{1 *}$; on behalf of the OPINION Investigators ${ }^{\dagger}$

rased, high-resolution intravascular imaging imaging technique for guiding percutane--iority of OFDI-guided PCl compared with
, trolled, non-inferiority study to compare seneration drug-eluting stent. The primary death, target-vessel related myocardial infarction, and ischaemia-driven target vessel revascularization until 12 months after the PCl . The major secondary endpoint was angiographic binary restenosis at 8 months. We randomly allocated 829 patients to receive OFDI-guided $\mathrm{PCI}(n=414)$ or IVUS-guided $\mathrm{PCI}(n=415)$. Target vessel failure occurred in 21 (5.2\%) of 401 patients undergoing OFDI-guided PCl , and 19 (4.9\%) of 390 patients undergoing IVUS-guided PCl , demonstrating non-inferiority of OFDI-guided PCI to IVUS-guided PCI (hazard ratio 1.07, upper limit of one-sided 95% confidence interval 1.80 ; $P_{\text {non-inferiority }}=0.042$). With 89.8% angiographic follow-up, the rate of binary restenosis was comparable between OFDI-guided PCI and IVUS-guided PCI (in-stent: 1.6% vs. $1.6 \%, P=1.00$; and insegment: 6.2% vs. $6.0 \%, P=1.00$).

Conclusion The 12-month clinical outcome in patients undergoing OFDI-guided PCl was non-inferior to that of patients undergoing IVUS-guided PCI. Both OFDI-guided and IVUS-guided PCI yielded excellent angiographic and clinical results, with very low rates of 8 -month angiographic binary restenosis and 12-month target vessel failure.

ILUMIEN III : OPTIMIZE PCI (Study Protocol)

Welkayama Medical Universinty

Primary Endpoint

Final post-PCI MSA by OCT

```
OCT 5.79 mm2 [4.54, 7.34]
IVUS 5.89 mm2 [4.67, 7.80]
97.5% one-sided Cl: [-0.70, -]
```


$$
P_{\text {noninferiority }}=0.001
$$

Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised
 Summary

 controlled trialBackground Percutaneous coronary intervention (PCI) is most commonly guided by angiography alone. Intravascular ultrasound (IVUS) guidance has been shown to reduce major adverse cardiovascular events (MACE) after PCI, principally by resulting in a larger postprocedure lumen than with angiographic guidance. Optical coherence tomography (OCT) provides higher resolution imaging than does IVUS, although findings from some studies suggest that it might lead to smaller luminal diameters after stent implantation. We sought to establish whether or not a novel OCT-based stent sizing strategy would result in a minimum stent area similar to or better than that achieved with IVUS guidance and better than that achieved with angiography guidance alone.

Methods In this randomised controlled trial, we recruited patients aged 18 years or older undergoing PCI from 29 hospitals in eight countries. Eligible patients had one or more target lesions located in a native coronary artery with a visually estimated reference vessel diameter of $2 \cdot 25-3 \cdot 50 \mathrm{~mm}$ and a length of less than 40 mm . We excluded patients with left main or ostial right coronary artery stenoses, bypass graft stenoses, chronic total occlusions, planned two-stent bifurcations, and in-stent restenosis. Participants were randomly assigned (1:1:1; with use of an interactive web-based system in block sizes of three, stratified by site) to OCT guidance, IVUS guidance, or angiography-guided stent implantation. We did OCT-guided PCI using a specific protocol to establish stent length, diameter, and expansion according to reference segment external elastic lamina measurements. All patients underwent final OCT imaging (operators in the IVUS and angiography groups were masked to the OCT images). The primary efficacy endpoint was post-PCI minimum stent area, measured by OCT at a masked independent core laboratory at completion of enrolment, in all randomly allocated participants who had primary outcome data. The primary safety endpoint was procedural MACE. We tested non-inferiority of OCT guidance to IVUS guidance (with a non-inferiority margin of $1.0 \mathrm{~mm}^{2}$), superiority of OCT guidance to angiography guidance, and superiority of OCT guidance to IVUS guidance, in a hierarchical manner. This trial is registered with ClinicalTrials.gov, number NCT02471586.

Findings Between May 13, 2015, and April 5, 2016, we randomly allocated 450 patients (158 [35%] to OCT, 146 [32%] to IVUS, and 146 [32%] to angiography), with 415 final OCT acquisitions analysed for the primary endpoint (140 [34\%] in the OCT group, 135 [33%] in the IVUS group, and 140 [34%] in the angiography group). The final median minimum stent area was $5.79 \mathrm{~mm}^{2}$ (IQR 4.54-7.34) with OCT guidance, $5.89 \mathrm{~mm}^{2}(4 \cdot 67-7.80)$ with IVUS guidance, and

ublished Online

Interpretation OCT-guided PCI using a specific reference segment external elastic lamina-based stent optimisation strategy was safe and resulted in similar minimum stent area to that of IVUS-guided PCI. These data warrant a largescale randomised trial to establish whether or not OCT guidance results in superior clinical outcomes to angiography guidance.

Intracoronary imaging \& physiology in ESC guideline 2014

Recommendations	Class $^{\text {a }}$	Level $^{\text {b }}$	Ref. ${ }^{\text {c }}$
FFR to identify haemodynamically relevant coronary lesion(s) in stable patients when evidence of ischaemia is not available.	I	A	$50,51,713$
FFR-guided PCI in patients with multivessel disease.	Ila	B	54
IVUS in selected patients to optimize stent implantation.	Ila	B	$702,703,706$
IVUS to assess severity and optimize treatment of unprotected left main lesions.	Ila	B	705
IVUS or OCT to assess mechanisms of stent failure.	Ila	C	
OCT in selected patients to optimize stent implantation.	Ila	C	

Eur Heart J. 2014;35:2541-2619

Imaging-guided PCI in daily practice Wakayama Medical university

- IVUS-guided PCI (20-30\%): LM-RCA orifice lesions

CTO
CKD
Others

- OCT-guided PCI (70-80\%): Almost all lesion (except for CTO)

Severe calcification ACS
Instent restenosis
BRS implantation
LM-Bifurcation

Pre-PCI OFDI (65 y.o. male, UAP)

OFDI at culprit site

Thrombus

Plaque rupture

Plaque rupture

$0.0 \mathrm{~mm}[66.4 \mathrm{~mm}]$

Demonstration of various causes in ACS

Plaque rupture 60-70 \%

Plaque erosion

$$
20-30 \%
$$

Calcified nodule

$$
5-6 \text { \% }
$$

Kubo T, Akasaka T, et al. J Am Coll Cardiol 2007;50:933-939 Wakayama Medicall Universikiy

Red \& white thrombus

Red thrombus

Protrusion mass with shadow

White thrombus

Protrusion mass without shadow

Mixed thrombus

Protrusion mass with \& without shadow

> Kume T, Akasaka T, et al. (Am J Cardiol 97:1713-1717, 2006) Kubo T, Akasaka T, et al. (J Am Coll Cardiol 50:933-939,2007)

OFDI at reference site

Distal reference

Lumen area $=14.1 \mathrm{~mm}^{2}$ Minimum lumen diameter $=4.39 \mathrm{~mm}$ Maximum Iumen diameter $=4.10 \mathrm{~mm}$

Proximal reference

$0.0 \mathrm{~mm}[66.4 \mathrm{~mm}]$

Representative case of definite OCT-erosion

Jia H, et al. J Am Coll Cardiol 2007;50:933-999

\fallingdotseq MI with non-obstructive coronary artery disease (MINOCA)
Walkayama Medical Universituy

Representative case of probable OCT-erosion

Jia H, et al. J Am Coll Cardiol 2007;50:933-999

Underlying plaque morphology is not well visualized due to the presence of residual red thrombus (A, B and C, arrows) without any detectable rupture (A through D).

Incidence of plaque rupture, erosion and calcified nodule in 126 lesions in pts with ACS

Jia H, et al. J Am Coll Cardiol 2007;50:933-999
Waknayama Medicall Universinty

Acute coronary syndromes without coronary plaque rupture

Siddak S. Kanwar¹, Gregg W. Stone², Mandeep Singh³, Renu Virmani4, Jeffrey Olin¹, Takashi Akasaka ${ }^{5}$ and Jagat Narula ${ }^{1}$

Abstract | The latest advances in plaque imaging have provided clinicians with opportunities to treat acute coronary syndrome (ACS) and provide individualized treatment recommendations based not only on clinical manifestations, angiographic characteristics, and biomarker data, but also on the findings of plaque morphology. Although a substantial proportion of ACS events originate from plaques with an intact fibrous cap (IFC), clinicians predominantly equate ACS with plaque rupture arising from thin-cap fibroatheromas. In this Review, we discuss the recent advances in our understanding of plaque morphology in ACS with IFC, reviewing contemporary data from intravascular imaging. We also explore whether use of such imaging might provide a roadmap for more effective management of patients with ACS.
coronary plaques leads am, and is responsible
syndrome (ACS), ; cap rupture

- Advances in plaque imaging have allowed clinicians to treat patients with ACS based not only on clinical manifestations, angiographic characteristics, and biomarker data, but also on plaque morphology
- The use of optical coherence tomography without angiographically obvious plaque rupture can assist in identification and characterization of the culprit lesion plaque morphology
- Conservative pharmacologic treatment without revascularization might be appropriate in some patients with an intact fibrous cap

Acute coronary syndromes

Effective anti-thrombotic therapy without stenting: intravascular optical coherence tomography-based management in plaque erosion (the EROSION study)

Haibo Jia ${ }^{1 \dagger}$, Jiannan Dai ${ }^{2 \dagger}$, Jingbo Hou ${ }^{1 \dagger}$, Lei Xing ${ }^{2}$, Lijia Ma ${ }^{1}$, Huimin Liu ${ }^{1}$, Maoen Xu ${ }^{1}$, Yuan Yao ${ }^{1}$, Sining Hu ${ }^{1}$, Erika Yamamoto ${ }^{2}$, Hang Lee ${ }^{3}$, Shaosong Zhang ${ }^{1}$, Bo $\mathrm{Yu}^{1 *}$, and Ik-Kyung Jang ${ }^{2 *}$

ogy and therefore may -onary syndrome (ACS) antation.

CS including ST-segment ectomy was performed. sidual diameter stenosis ; OCT was repeated at of thrombus volume at ath, recurrent ischaemia ble OCT images, plaque erosion was ıentiriea in ius ($\angle כ .4 \%$) patients. गxxy patients enrouea ana patients compieted the 1-month followup. Forty-seven patients ($47 / 60,78.3 \%$; 95% confidence interval: $65.8-87.9 \%$) met the primary endpoint, and 22 patients had no visible thrombus at 1 month. Thrombus volume decreased from $3.7(1.3,10.9) \mathrm{mm}^{3}$ to $0.2(0.0,2.0)$ mm^{3}. Minimal flow area increased from $1.7(1.4,2.4) \mathrm{mm}^{2}$ to $2.1(1.5,3.8) \mathrm{mm}^{2}$. One patient died of gastrointestinal bleeding, and another patient required repeat percutaneous coronary intervention. The rest of the patients remained asymptomatic.

Conclusion

For patients with ACS caused by plaque erosion, conservative treatment with anti-thrombotic therapy without stenting may be an option.

Changes in thrombus volume in ACS with plaque erosion

Absolute volume change

Percent thrombus volume reduction

Neointimal tissue characterization by OCT

Heterogeneous
Layered

Homogeneous

Restenotic tissue has uniform optical properties and dose not show focal variations in backscattering pattern.

Neointimal tissue has very thin \& uniform optical properties with backscattering pattern.

Restenotic tissue has focally changing optical properties and show various backscattering patterns.

Restenotic tissue consists of
concentric layers with different optical properties: an adluminal high scattering layer \& adluminal low scattering layer.

Although no data showing the relation between OCT-findings \& histology in detail, there is a data demonstrating the effect of DCB according to OCT finding.

Association between restenotic tissue morphology and acute/mid-term results

	Tissue structure Heterogenous type Homogenous type						Layered type		
	$\begin{gathered} \text { PCB } \\ (\mathrm{n}=55) \end{gathered}$	$\begin{aligned} & \text { POBA } \\ & (\mathrm{n}=27) \end{aligned}$		$\begin{gathered} \text { PCB } \\ (\mathrm{n}=20) \end{gathered}$	$\begin{aligned} & \text { POBA } \\ & (\mathrm{n}=8) \end{aligned}$	P value	$\begin{gathered} \text { PCB } \\ (\mathrm{n}=71) \end{gathered}$	$\begin{aligned} & \text { POBA P } \\ & (n=33) \end{aligned}$	P value
Acute gain mm	1.14 ± 0.53	0.90 ± 0.56	0.060	1.25 ± 0.58	1.21 ± 0.38	0.885	1.20 ± 0.58	1.14 ± 0.60	0.597
Late loss mm	0.25 ± 0.50	0.70 ± 0.58	0.0000	0.45 ± 0.72	0.84 ± 0.85	0.234	0.23 ± 0.60	0.61 ± 0.69	0.005
Net gain mm	0.90 ± 0.61	0.20 ± 0.67	0.0000	0.80 ± 0.69	0.38 ± 0.98	0.208	0.98 ± 0.73	0.53 ± 0.63	0.003
ISR n (\%)	11 (20.0)	15 (55.6)	0.002	7 (35.0)	3 (37.5)	1.000	16 (22.5)	13 (39.4)	0.100
TLR n (\%)	7 (12.7)	10 (37.0)	0.019	5 (25.0)	3 (37.5)	0.651	14 (19.7)	12 (36.4)	0.089
Acute gain = (post-procedural - pre-procedural) MLD Late loss = (post-procedural - follow-up) MLD Net gain = (follow-up - pre-procedural) MLD									

Association between restenotic tissue morphology and acute/mid-term results

Tissue backscatter	High backscatter			Low backscatter		
	$\begin{gathered} \text { PCB } \\ (\mathrm{n}=81) \end{gathered}$	$\begin{aligned} & \text { POBA } \\ & (\mathrm{n}=40) \end{aligned}$	P value	$\begin{gathered} \text { PCB } \\ (\mathrm{n}=65) \end{gathered}$	$\begin{aligned} & \text { POBA } \\ & (\mathrm{n}=28) \end{aligned}$	P value
Acute gain mm	1.12 ± 0.50	0.97 ± 0.58	0.139	1.26 ± 0.62	1.17 ± 0.54	0.476
Late loss mm	0.23 ± 0.51	0.73 ± 0.70	0.000	0.31 ± 0.66	0.59 ± 0.62	0.059
Net gain mm	0.90 ± 0.61	0.25 ± 0.67	0.000	0.96 ± 0.76	0.58 ± 0.70	0.027
ISR n (\%)	16 (19.8)	21 (52.5)	0.000	18 (27.7)	10 (35.7)	0.467
TLR n (\%)	11 (13.6)	17 (42.5)	0.001	15 (23.1)	8 (28.6)	0.606

[^0]
Association between tissue characteristics evaluated with optical coherence tomography and mid-term results after paclitaxel-coated balloon dilatation for in-stent restenosis lesions: a comparison with plain old balloon angioplasty

Takeshi Tada ${ }^{1 *}$, Kazushige Kadota ${ }^{1}$, Shingo Hosogi ${ }^{2}$, Koshi Miyake ${ }^{1}$, Hideo Amano ${ }^{1}$, Michitaka Nakamura ${ }^{1}$, Yu Izawa ${ }^{1}$, Shunsuke Kubo ${ }^{1}$, Tahei Ichinohe ${ }^{1}$, Yusuke Hyoudou ${ }^{1}$, Haruki Eguchi ${ }^{1}$, Yuki Hayakawa ${ }^{1}$, Suguru Otsuru ${ }^{1}$, Daiji Hasegawa ${ }^{1}$, Yoshikazu Shigemoto ${ }^{1}$, Seiji Habara ${ }^{1}$, Hiroyuki Tanaka ${ }^{1}$, Yasushi Fuku ${ }^{1}$, Harumi Kato ${ }^{1}$, Tsuyoshi Goto ${ }^{1}$, and Kazuaki Mitsudo ${ }^{1}$
 Koakl hpen

Aims	Morphological assessment of neointimal tissue using optical coherence tomography (OCT) is important for clariffing the pathophysiolozy of instent restenoss (ISR) lesions. The aimof this study wastodetermine the impactofOCT findings on recurrence of ISR after pacitasel-coated balloon (PCB) dilatation compared with plain old balloon angioplasty (POBA).
Methods and results	Between July 2008 and May 2012, we performed percutaneous cororary intervention for 214 ISR lesions using POBA + PCB (146 lesions, PCB group) or POBA only (68 lesions, POBA group). Morphological assessment of neointimal tissue using OCT, including assessment of restenotic tissue structure and restenotic tisue badscatter, was performed. We examined the association between lesion morphologies and mid-term ($6-8$ months) results including ISR and target lesion revascuarization (TLR) rates. Both ISR and TLR rates of lesions wth a homogeneous structure were siggificantly lower in the $P C B$ group than those in the $P O B A$ group (ISR $20.0 \mathrm{vs} .55 .6 \% P=0.002$, TLR $12.7 \mathrm{vs} .37 .0 \%, P=0.019$), but there was no differencebetween the two groups in ISR and TLR rates of lesions with a heterogeneous or layered structure BothISR and TLR rates of lesions with high badscatter were significantly lower in the PCB groupthan those in the POBA group (ISR: $19.8 \mathrm{vs} .52 .5 \%, P<0.001$, TLR: $13.6 \mathrm{vs} .42 .5 \%, P=0.001$), but there was no difference between the two groups in ISR and TLR rates of lesions with low badscatter.
Conclusion	MorphologicalassessmentoflSR tissue using OCT might be usefulforidentifying ISR lesions favourable for PCB dilatation.
Keywords	optical coherence tomography * in-stent restenosis lesion * paclitaxel-coated balloon

New Development in OCT

Re-crossing wire position in the jailed side branch can be easily identified by new OCT and improvement of side branch KBT procedure could be expected by using new OCT.

Post－stent，LCX rewiring $1^{\text {st }}$ ，Cut－away view

3D optical coherence tomography: new insights into the process of optimal rewiring of side branches during bifurcational stenting

Abstract

Takayuki Okamura ${ }^{1 *}$, MD, PhD; Yoshinobu Onuma ${ }^{2}$, MD; Jutaro Yamada ${ }^{1}$, MD, PhD; Javaid Iqbal ${ }^{2}$, MRCP, PhD; Hiroki Tateishi', MD, PhD; Tomoko Nao^{1}, MD, PhD; Takamasa Oda ${ }^{1}$, MD; Takao Maeda ${ }^{1}$, MD; Takeshi Nakamura ${ }^{1}$, MD; Toshiro Miura ${ }^{1}$, MD, PhD; Masafumi Yano ${ }^{1}$, MD, PhD; Patrick W. Serruys ${ }^{2}$, MD, PhD, FFCC F $\Delta r C$

\section*{Abstract} 1. Division of Cardiology, Departm" Ube, Japan; 2. Thoraxcenter, Erasn

Aims: We describe three-dimensional optical coherence tomography (3D-OCT) guided bifurcation stenting and the clinical utility of 3D-OCT. T. Okamura and Y. Ommma have cor

Methods and results: Twenty-two consecutive patients who underwent OCT examination to confirm the GUEST EDITOR: Carlo Di Maric Brompton Hospital, London, Unitea recrossing position after stent implantation in a bifurcation lesion were enrolled. Frequency domain OCT images were obtained to check the recrossing position and 3D reconstructions were performed off-line. The recrossing position was clearly visualised in 18/22 (81.8\%) cases. In 13 cases, serial 3D-OCT could be assessed both before and after final kissing balloon post-dilation (FKBD). We divided these cases into two groups according to the presence of the link between hoops at the carina: free carina type ($\mathrm{n}=7$) and connecting to carina type $(\mathrm{n}=6)$. All free carina types complied with the distal rewiring. The percentage of incomplete stent apposition (\%ISA) of free carina type at the bifurcation segment after FKBD was significantly smaller than that of the connecting to carina type ($0.7 \pm 0.9 \%$ vs. $12.2 \pm 6.5 \%, \mathrm{p}=0.0074$).

Conclusions: 3D-OCT confirmation of the recrossing into the jailed side branch is feasible during PCI and may help to achieve distal rewiring and favourable stent positioning against the side branch ostium, leading to reduction in ISA and potentially better clinical outcomes.

Japanese registry for 3-D OCT guided LM bifurcation stenting

Study population (Final)
More than $\mathbf{3 0 0}$ LM bifurcation lesions

Primary endpoint
Frequency of re-wiring by 3-D OCT guidance:
re-wiring should be required again more than 30% cases.
Secondary endpoint
Incidence of ISA:
MACE:

Frequency of jailing configuration \& GW rewiring position

Okamura T, et al.

Guidewire recrossing
After kissing ballooning Group
Eurolntervention 2017 accepted

105 cases

Incidence of ISA at each segment

Okamura T, et al. Eurolntervention 2017 accepted

Assessment of BVS by OFDI

BVS damage grade 1: Discontinuity

Take home message Can OCT replace IVUS in daily practice ?

> Similar to IVUS, OCT-guided PCI could be useful to improve the result of PCI and clinical outcomes and class lla recommendation might be expected in OCTguided PCI in the near future., although there are several advantages and disadvantages in IVUS and OCT.
> OCT can replace IVUS in almost all cases in daily practice except for several specific cases such as LM or RCA orifice lesion, CTO, CKD, and so on.

- OCT may have advantages to know the pathophysiology of ACS, instent restenosis, severe calcified lesion, BRS implantation, etc., and 3-D reconstruction may improve bifurcation lesion treatment.

Walkayama Medical Universinty

BVS damage grade 3: Deficiency

Whanayama Medficall Universituy

Prediction of side branch occlusion by OCT

Watanabe M et al. Coron Artery Dis 2014; 25: 321-329
Side branch occlusion might be occurred less frequently in cases with carina tip (CT) angle $\geqq 50$ degree and branch point to carina tip(BP-CT) length $\geqq 1.7 \mathrm{~mm}$

[^0]: Acute gain = (post-procedural - pre-procedural) MLD
 Late loss = (post-procedural - follow-up) MLD
 Net gain = (follow-up - pre-procedural) MLD

