JCR Busan 9-10 December 2017

Gianluca Rigatelli, MD, PhD, EBIR, FACC, FESC, FSCAI

Cardiovascualar Diagnosis and Endoluminal Interventions Unit, Rovigo General Hospital, Italy

Computed Flow Dynamic in Interventional Cardiology: Comparison of different optimization techniques in left main stenting

Why Computed flow dynamic?

Question:

1. What is the best optimization technique in left main cross over stenting?

2. What is the best optimization technique in Left main dual stenting technique (Culotte)

CFD might be a type of answer....

Computed flow dynamic in Left Main

Coronary Left Main Model

Computed flow dynamic in coronary Left main

Absolute number

Considered fluid parameters

- Static pressure (Pa)
- Reynolds number
- Vorticity magnitude (1/s)
- Stream function (Kg/s)
- Strain rate (1/s)
- Skin friction coefficient

WALL SHEAR STRESS: HIGHER VALUES ARE BETTER

р h y si o l o g y

Computed flow dynamic in coronary Left main

Stent simulation

the strut design and linkage pattern of a third-generation, everolimus-elunting stent (Orsiro stent, Biotronik IC, Bulack, Switzerland), used in our institution. In particular, the strut thickness is characterized by a very ultrathin strut (60 µm up to 3.0 mm diameter stent and 80µm up to 4.0 mm stent)

Virtual implantation

After placed the stent model in the correct position, according to the different stenting techniques, material removal, depending on the considering techniques was applied.

Using Boolean operation, the modified solid model is subtracted from the bifurcation model to obtain the final geometry

Computed flow dynamic in coronary Left Main

Virtual implantation Steps

A-Cross-over/provisional stenting: 1) Predilation of MV 1:1 with non-compliant balloon; 2) Stenting of MV with stent diameter according to the distal MV reference diameter as currently recommended.

B- Culotte stenting:

1) Predilation of both branches 1:1 with non-compliant balloon; 2) Stenting of MV to SB; 3) Opening the stent cell with small 2.0 x 15 balloon; 4) Stenting MB proximal to distal

A

С

D

		Steps				
Techniques	1	2	3			
РОТ	Inflation of SC balloon					
	4.5 x 6 mm at 20 atm					
КВ	Inflation of the SB with SC balloon 2.0 x 15	Simultaneous inflation of 3.5 x 15 (LM to				
	mm at 16 atm	LAD) e 2.75 x 15 mm (LM to LCx) SC				
		balloons at 18 atm				
POT -Side-POT	Inflation of SC balloon 4.5 x 6 mm at 20 atm	Inflation of 2.75 x 15 mm (LM to LCx) NC	Inflation of SC 4.5 x 6 mm			
		balloon at 18 atm	balloon at 20 atm			
РОТ-КВ-РОТ	Inflation of SC balloon 4.5 x 6 mm at 20	Simultaneous inflation of 3.5 x 15 (LM to	Inflation of SC balloon 4.5 x 6			
	atm	LAD) e 2.75 x 15 mm (LM to LCx) SC	mm at 20 atm			
		balloons at 18 atm				
2SK	Inflation of the SB with SC balloon 2.0 x 15	Inflation of 3.5 x 15 (LM to LAD) SC	Inflation of 2.75 x 15 mm (LM to			
	mm at 16 atm	balloon at 18 atm	LCx) SC balloon at 18 atm			
SKB	Simultaneous inflation of 3.5 x 15 (LM to					
	LAD) e 2.75 x 15 mm (LM to LCx) SC					
	balloons at 18 atm with the marker of the SB					
	balloon at the middle of the MB balloon					

Provisional stenting

	Pressu re at the caren a (mmH	WSS LAD (Pa)	WSS LCX (Pa)	WSS Carena (Pa)	Area of lower WSS at carena (mm2)	WSS opposite to the carina (Pa)	Area of lower WSS opposite to the carina (mm2)
Physiological Model	g) 80 *	10.624* **	12.803*	3.266*	201* ** ***	2.28* **	186 * **
POT-Side-POT	79.2	9.210	10.657	2.740	508 **	2.96 **	304 **
KB only POT-KB-POT	80.8 79.3*	10.407 8.415*	12.06 9.729*	3.100 2.503*	254 489*	3.02 2.44*	214 288 *
POT only		9.608	11.12	2.860	278	2.52	201
2SK SKB	79.5 79.4 79.3	9.665 .897**	11.99 9.554 **	3.025 2.478 **	233 471 ***	2.19 3.58	218 265

Computed flow dynamic in coronary Left Main

Provisional stenting

0.00e+00

G

Culotte stenting

		Pressure at the carena (mmHg)	WSS LAD (Pa)	WSS LCX (Pa)	WSS Carena (Pa)	Area of lower WSS at carena (mm2)	WSS opposite to the carina (Pa)	Area of lower WSS opposite to the carina (mm2)
Physio Model	logical	80.0	10.624* **	12.800* **	3.266* **	208* **	2.28	186
POT-S	ide-POI	S 80.2	10.150	12.324*	3.102	249 **	2.11	221
KB on POT-k	ly TR-POT	80.2 79 9	10.204 10.769	12.477 12.698	3.189	236*	2.16	214
2SK	101	79.8	10.125*	12.355	3.279	228	2.14	219
SKB		79.8	9.995**	12.239**	3.104**	209	2.35	198

Computed flow dynamic in coronary Left Main

Computed flow dynamic in coronary Left Main

Answer

-in LM provisional stenting, POT, Kissing Balloon, and 2-SK showed a similar beneficial impact on the bifurcation rheology at both carena and SB wall opposite to the carena

-in LM Culotte stenting, POT-Kissing balloon-POT and Snuggle Kissing performed slightly better than the other techniques, probably reflecting a better strut apposition.

CONCLUSIONS....

✓ Awaiting for clinical studies, CFD GIVE AT LEAST AN IDEA OF HOW MUCH THE INTERVENTIONAL TECHNIQUES ARE ADHERENT TO PHYSIOLOGY

✓ APPLYING ONE OR ANOATHER TECHNIQUES HAS A DIFFERENT IMPACT ON RHEOLOGY

✓ BY CFD POT and 2-SK RESULTED MORE BENEFICIAL IN CROSS OVER STENTING THAN OTHER TECHNIQUES

✓ BY CFD POT-KB-POT AND 2-SK RESULTED MORE BENEFICIAL THAT OTHER TECHNIQUES IN DUAL STENTING probably reflecting a better struts apposition