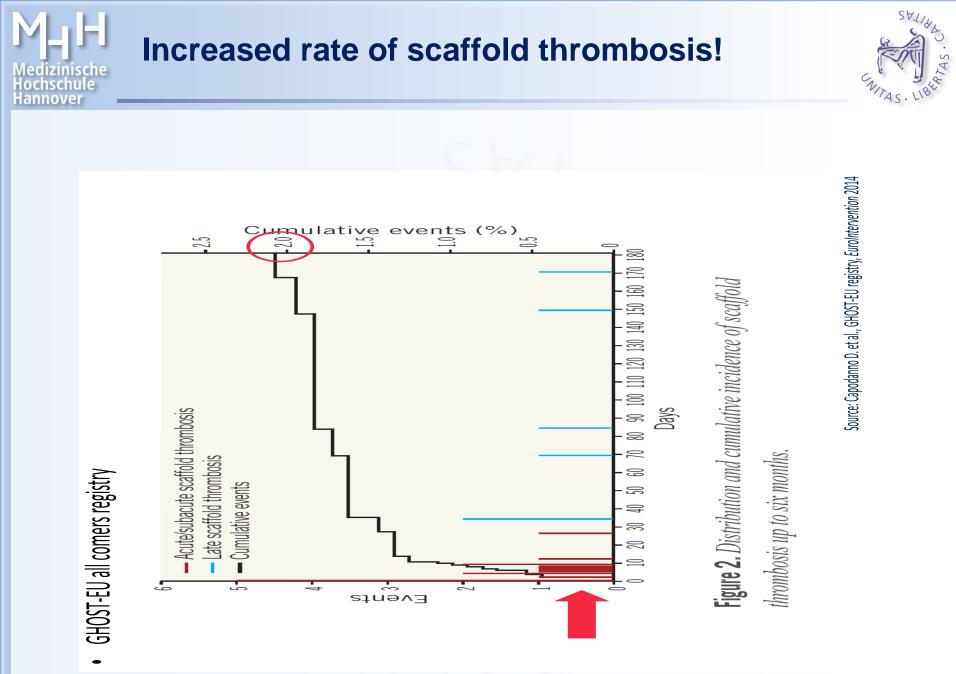


Bioresorbable vascular scafolds: Current limitations and future perspectives

CE-marked bioresorbable scaffolds



Main device characteristics

Stent Name (Manufacturer)	Stent Platform	Strut Thickness	Coating Material	Coating Thickness	Drug	Reported Release Profile	Drug Dose
BVS 1.1 (Abbott)	PLLA	157 μm	PLLA	2–4 µm	Everolimus	75% of loaded everolimus within 30 days	100 μg/ cm²
DESolve (Elixir)	PLLA	150 μm	Bioresorbable polymer	<3 µM	Novolimus	More than 85% of the drug is released over 4 wk	5 μg/mm
ART Pure (ART)	PDLLA	170 µm			No drug	NA	NA
Magmaris (Biotronik)	93% Mg and 7% rare earth elements	150 μm	PLLA	1 μm	Sirolimus	Over 3 to 6 mo	1.4 μg/ mm²

BVS indicates bioresorbable vascular scanolo; NA, data not available; PDLLA, poly(L-lactide-co-D,L-lactide); and PLLA, poly-L-lactide.

Absorb BRS is the only device with clinical outcome data from RCTs

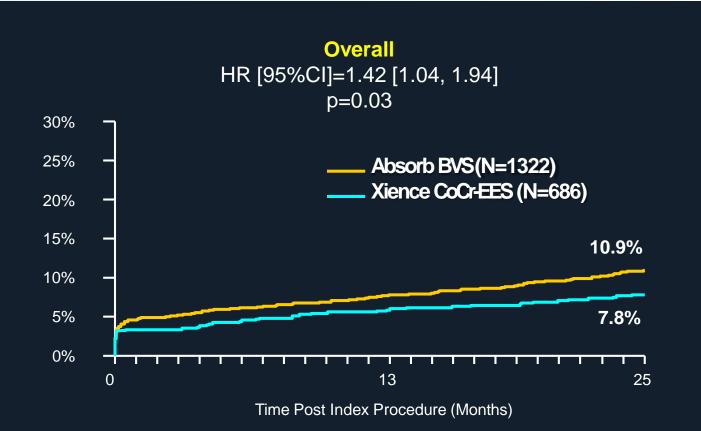
ERTAS.

Meta-analysis of 6 RCTswith Absorb BRS

Primary endpoint results (at or before 12 nonths)

A Target lesion revascularisation

	BVS		EES		Weight	Fixed-effects odds ratio	
	Events	Total	Events	Total	(%)	(95% CI)	
ABSORB China	7	238	7	237	13.2	1.00 (0.34–2.88)	
ABSORB II	4	335	3	166	5.9	0.64(0.13-3.12)	
ABSORB III	42	1313	19	677	51.6	1.14 (0.67–1.95)	
ABSORB Japan	7	265	5	133	10.1	0.68 (0.20–2.31)	
EVERBIO II	8	78	11	80	16.3	0.72 (0.28–1.87)	
TROFI II	2	95	1	96	2.9	1.98 (0.20–19.29)	a
Overall	70	2324	46	1389	100	0.97 (0.66–1.43)	


Heterogeneity: $\chi^2=1.69$, df=5; p=0.89; l²=0% Test for overall effect: Z=0.16; p=0.87 Random-effects odds ratio 0.97 (95% CI 0.66-1.43)

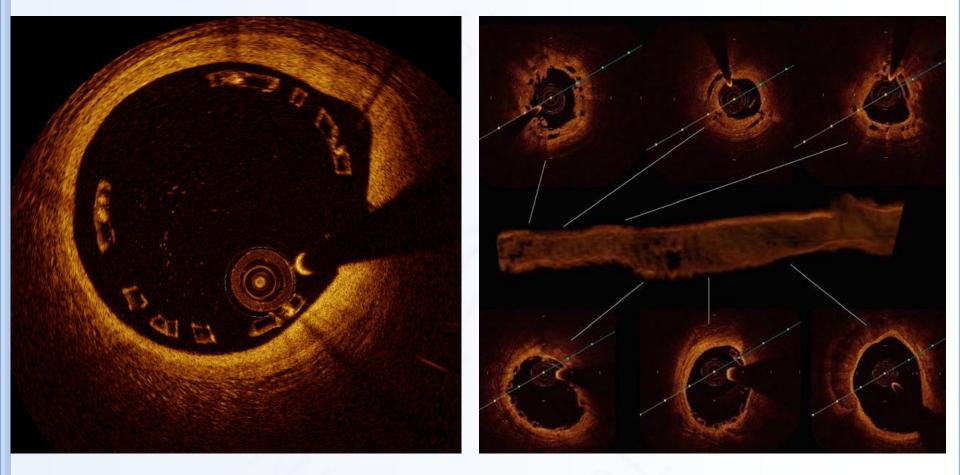
B Definite or probable stent thrombosis

	BVS EES			Weight	Fixed-effects odds ratio					
	Events	Total	Events	Total	(%)	(95% CI)				
ABSORB China	1	238	0	232	3.1	7.21 (0.14-363.23)			.	
ABSORB II	3	335	0	166	8.2	4.49 (0.04-49.92)			-	max.
ABSORB III	20	1301	5	675	69.1	1.89 (0.82-4.34)				
ABSORB Japan	4	262	2	133	16.5	1.02 (0.18-5.58)				
EVERBIO II	0	78	0	80		Not estimable				
TROFI II	1	95	0	96	3.1	7.47 (0.15-376.35)				
Overall	29	2309	7	1382	100	1.99(1.00-3.98)				
Heterogeneity:)						0.01	0.1	1	10	100
Test for overall e						0.01	BVS better	-	EES better	100
Random-effect	s odds rat	io 1.99 (95	5% CI 1.00-3	3.98)						

Definite or probable stent/scaffold thrombosis

Wykrzykowska et al. | New Engl J Med online 29th March 2017

Absorb BRS: Metaanalysis (6/2017)


Data available from 7x RCTs with 2yr+ FU

	0	VLL	Random-effects odds ratio [95% Cl]; p for overall effect	l ²
Target lesion failure		•	1.34 [1.10, 1.64]; p= 0.012	0%
Definite or probable stent/scaffold thrombo	sis		3.21 [2.28, 4.51]; p= 0.0002	0%
Cardiac death			0.89 [0.55-1.43]; p= 0.56	0%
Target vessel myocardial infarction			1.66 [1.21-2.29]; p= 0.008	0%
Ischemia-driven target lesion revascularization			1.41 [1.11-1.79]; p= 0.012	0%
	BVS better	EES better		
	0.1	1 10		
	Odds	ratio	Cassese Set al.	EURO-PCR 2017

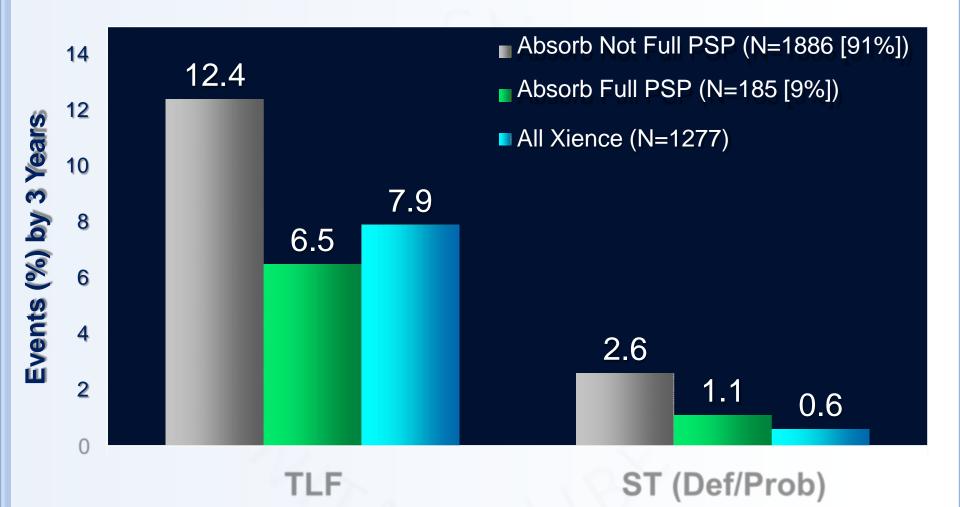
Factors responsible for scaffold failure: Undersizing and underexpansion !!!

Scaffold underexpansion, undersizing and geographical miss → early ScT.

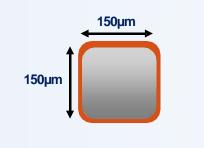
Cuculi, Puricel et al. - Circ Interv. 2015

Bioresorbable Coronary Scaffold Thrombosis

Multicenter Comprehensive Analysis of Clinical Presentation, Mechanisms, and Predictors


- 1305 patients, 1870 BVS, all-comers
- Incidence of probable and definite ScT
 - 1.8 %at 1 month
 - 3.0 %at 12 months
- Independent predictors of ScT
 - Ostial lesions, impaired LV-Function
- ScTrates rapidly increased for post-procedural lumen diameters < 2.4 mm (2.5-3.0 mm scaffold) and < 2.8 mm (3.0 mm scaffold)
- Improved strategy (PSP) dropped ScTrates to 1 %!

Impact of Full PSP* on 0-3 Year Outcomes Pooled ABSORB Trials, As-Treated Population**



DREAMS-2G (MAGMARIS) Sirolimus Eluting Mg Scaffold

Sirolimus + PLLA(BIOlute)

90-Day Faxitron, porcine explant

- 6-crown 2-link design,
- 150µm strut thickness
- 150µm strut width
- Optimized scaffold design for
 - Higher bending flexibility
 - Higher <u>acute radial force</u>
 - Slower <u>absorption rate</u>: 95% at 12 months
- Sirolimus drug elution & PLLA(ORSIROBIOlute coating)
- Tantalum radiopaque markers
- Gained Œmark in June 2016

BIOSOLVE-II Clinical data out to 24-month

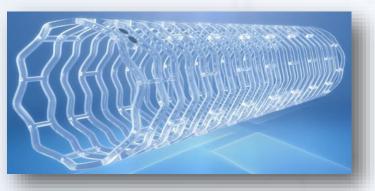
SAT

BIOSO

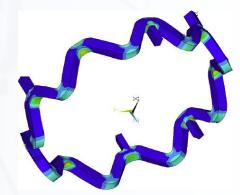
	6-month		12-m	onth	24-month	
	N=120	%	N=118	%	N=120	%
ТЪР	4	3.3	4	3.4	7	5.9
Death	2	1.7	2	1.7	4	3.3
Cardiac Death [†]	0	0.0	0	0.0	0	0.0
Non-cardiac death	11	0.8	11	0.8	2 ^{1,2}	1.7
Unknown deatht	1 ³	0.8	1 ³	0.8	2 ^{3,4}	1.7
Target Vessel MI ⁺	1	0.8	1	0.8	1	0.8
Clinically driven TLR [†]	2	1.7	2	1.7	4	3.3
CABGt	0	0.0	0	0	0	0.0
Scaffold Thrombosis definite or probable	0	0.0	0	0.0	0	0.0

[†] Composite of TLF: cardiac and unknown death, target vessel myocardial infarction, clinically driven target lesion revascularization and CABG

- TLF(5.9%) and TLR(3.3%) rates in BIOSOLVE-II remain low and comparable to other absorbable scaffolds and permanent drug-eluting stents out to 24-month when the DREAMS-2G is already fully absorbed
- TLF in BIOSOLVE-III confirm the low TLF and TLR rates of the BIOSOLVE-II trial despite more complex lesions being treated in BIOSOLVE-III
- There was no definite or probable scaffold thrombosis up to 24-month FUP with DAPT termination at 12-month latest
- In-segment and in-scaffold late lumen loss remained stable between 6- and 12-month FUP in 42 patients with serial angiographic assessment in BIOSOLVE-II



DESolve® Bioresorbable Coronary Scaffold


Engineered to fulfill the promise of BRS

- PLLA-based polymer
- Early degradation at 6 months and near complete resorption (mass loss) in 1 year¹
- Self-correction mechanism that minimizes malapposition and chronic recoil
- Novolimus, metabolite of Sirolimus dosed at 5µg/mm for sustained neointimal inhibition

Designed for advanced vessel support

- Open cell body for flexibility and side- branch access
- Strut thickness: 150µm (and 120µm)
- Fracture Resistant up to 5mm
- Low acute and chronic recoil²
- Early lumen and scaffold enlargement at 6-mo.²
- Sustained efficacy out to 4 years³

¹~70% resorption in developmental preclinical data; on file at Elixir Medical ²Abizaid et al. JACC Cardiovasc Interv. 2016;9(6):565-74; ³Abizaid, DESolve NX 4 YR, TCT 2016

Medizinische Hochschule Hannover

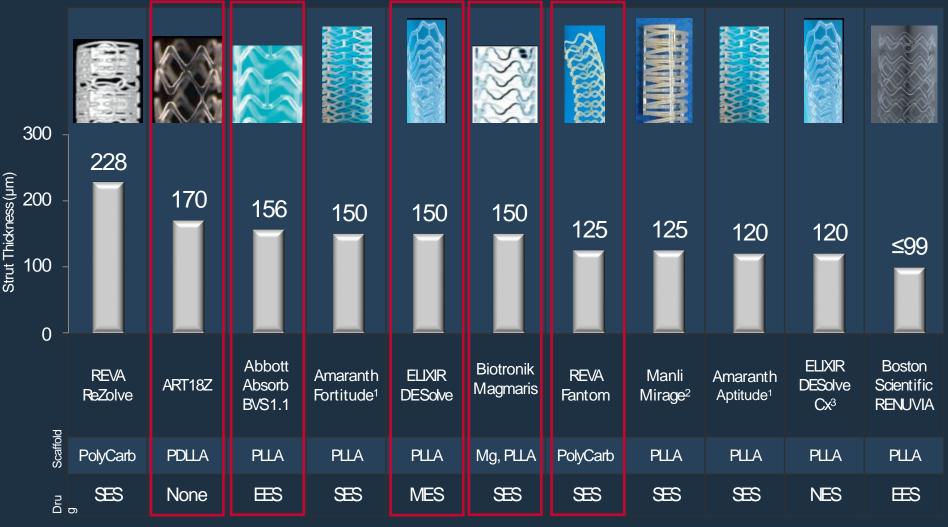
Variable	DESolve Nx ¹	DESolve PMCF	
N (pat/lesions)	126/126	102/109	
Sites	13	10	
Diabetes	21%	26%	
LAD	38%	47%	
Scaffold implant	122/126	100/102	
Lesion length, mm	11.23	17.27	
Reference diameter, mm	3.00	3.03	
Type C lesion	3%	51%	
Long-term FU at 24 months			
- Cardiac death	2.5%	0%	
- Target vessel MI	0.8%	1%	
- Clinically indicated TLR	4.1%	3%	
- Scaffold thrombosis	0.8%	1%	

Considerations

Potential implications for BRS

The DESolve Scaffold offers potentially important key differences as compared to other BRS:

- Early degradation at 6 months and near complete resorption in one year
- Fracture resistance with the ability to over-expand across an extended range of diameters
- New user-friendly designs
 - DESolve Cx: Thinner 120µm struts
 - DESolve NXT: 120µm contoured struts for improved embeddedness
 - TRANSFORM balloon technology for preferentially enhanced force transmission


Collectively these features allow DESolve to demonstrate confirmatory safety and effectiveness at 2 yrs

1st Generation BRS

2nd Generation BRS

Tenekecioglu, et al. BMC Cardiovasc Disord .2016:2-11. ¹Colombo. Presented at JIM 2016. ²Santoso. Presented at TCT 2014. ³Abizaid. Presented at JIM 2016.

Outlook

Important points to consider to further improve BVS performance:

- Patient selection and lesion characteristics (not in ostial lesions, calcified lesions, small vessels <2.5mm)
- Lesion preparation and implant technique (PSP)
- Duration of DAPT
- Duration of bioresorption (faster may be better)
- Novel scaffold designs (thinner scaffolds, less turbulent flow)