

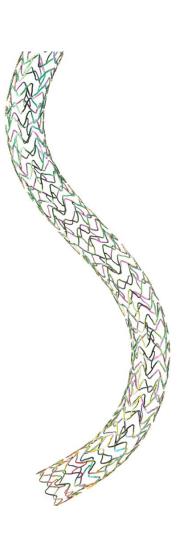
BIOFLOW by Orsiro stents

Byeong-Keuk Kim, MD, PhD

Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine

Key Benefits - Orsiro

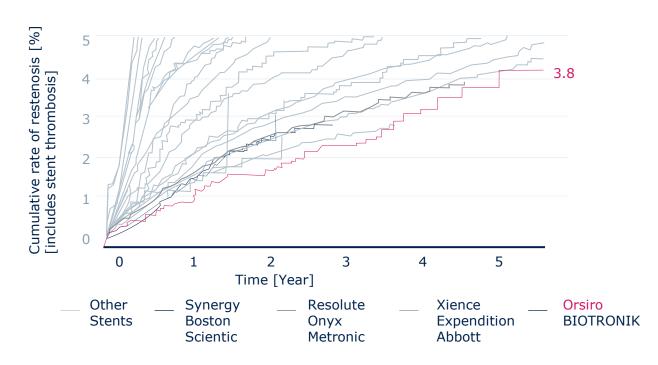
Clinically proven¹


- >32,500 patients enrolled
- >50,500 patients planned in total
- >44 studies ongoing
- >55 studies planned in total

Highly deliverable¹

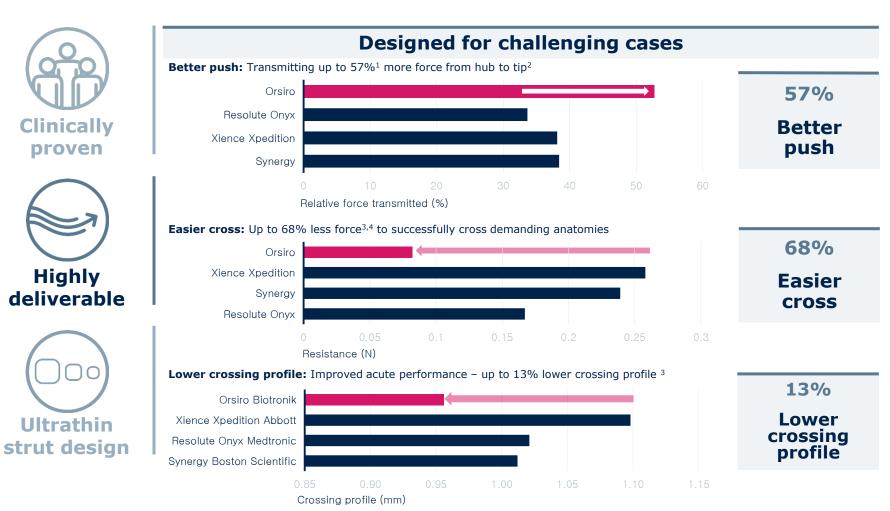
Ultrathin 60 µm struts²

Key Benefits - Clinically Proven


Proven long term clinical outcomes

All stents implanted from 2007 until January 11, 2017 unadjusted (SCAAR)^{1,2}

Orsiro showed a lower restenosis rate than all DES out to five years.

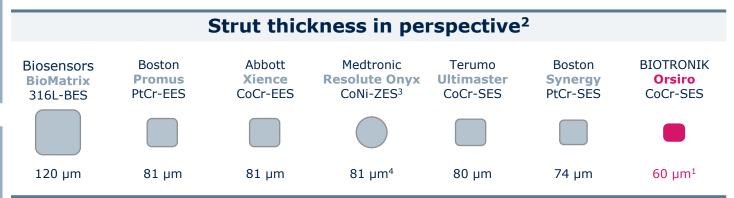


^{*} Posterior probability, Bayesian analytical methods were applied

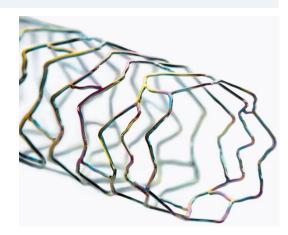
¹ Adapted from SCAAR data (August 24th 2016) http://www.ucr.uu.se/swedeheart/99-scaar/forskning-scaar; 2. Compared to other DES included in SCAAR at 5 years

Key Benefits - Highly Deliverable

¹ Compared to Resolute Onyx; 2. The stent system is advanced through a model, to a point of blockage (simulating a total occlusion). The force at the proximal hub and at the blockage is measured. Pushability is the force transmitted along the length of the catheter. - IIB(P)31/2015 - IIB(P)85/2014-2; 3. Compared to Xience Xpedition; 4 The stent system is advanced through a stenosis model. Crossability is the mean resistance (mean force) registered by the stenosis during the complete passage of the stent delivery system. - IIB(P)31/2015 - IIB(P)85/2014-2


Key Benefits - Ultrathin Strut Design

Ultrathin 60 µm struts¹


Thinner struts make the difference

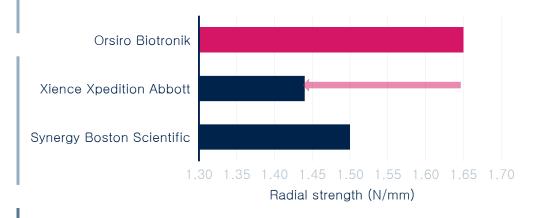
Thinner struts create:

- Less disrupted flow³
- Less arterial injury³

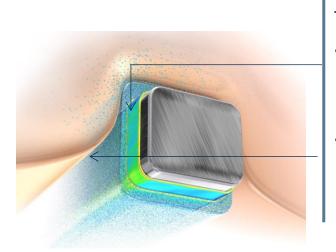
Which leads to:

- Faster re-endothelialization³
- Reduced risk of restenosis and thrombosis³

Key Benefits - Ultrathin Strut Design



The thinner the better, as long as radial force can be maintained¹


Up to 15% more radial strength^{2,3} for stronger scaffolding once implanted.

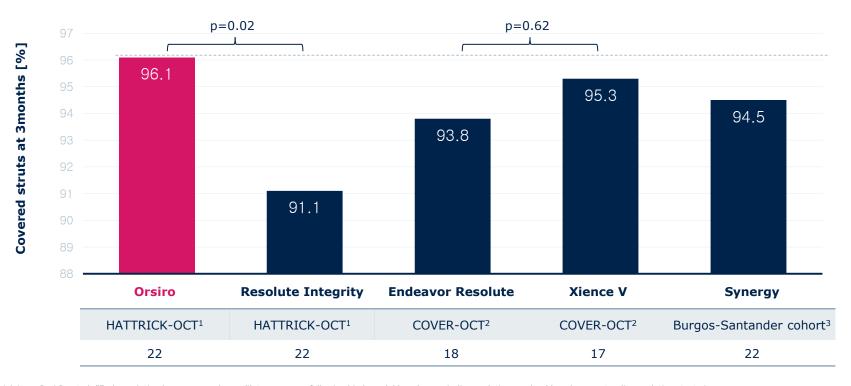
15%
More radial strength

¹ The stent system is advanced through a stenosis model. Crossability is the mean resistance (mean force) registered by the stenosis during the complete passage of the stent delivery system. - IIB(P)31/2015 - IIB(P)85/2014-2; 2. Compared to Xience Expedition; 3. Expanded 3.0 mm diameter stents are radially compressed (15% of Ø) along full length. The force required to compress the stent is radial strength. BIOTRONIK data on file.

Orsiro Drug-Eluting Stent with a Bioabsorbable Polymer

The coating structure:

Passive component **proBIO** encapsulates the stent, reducing interaction between the metal stent and the surrounding tissue



 Active component **BIOlute** consists of the most proven limus family drug and a bioabsorbable polymer matrix (PLLA) which achieves a controlled drug release.

√ The BIOlute Coating elutes drug, becomes absorbed and leaves a
proBIO coated stent behind.

Based on these features of Orsiro, re-endothelialization is faster, stable, & more complete. Only 3.9% uncovered struts at 3 months in ACS patients¹

DAPT duration in each individual patient should be guided by an individualized approach based on ischaemic vs. bleeding risk assessment and not by the stent type. -2017 ESC focus update on DAPT in CAD⁴

¹ Karjalainen, Pasi P., et al. "Early neointimal coverage and vasodilator response following biodegradable polymer sirolimus-eluting vs. durable polymer zotarolimus-eluting stents in patients with acute coronary syndrome." Circulation Journal 79.2 (2015): 360-367;

² Kim, Seunghwan, et al. "Comparison of early strut coverage between zotarolimus-and everolimus-eluting stents using optical coherence tomography." American Journal of Cardiology 111.1 (2013): 1-5;

³ de la Torre Hernández, Jose M., et al. "Early healing assessment with optical coherence tomography of everolimus-eluting stents with bioabsorbable polymer (synergy™) at 3 and 6 months after implantation." Catheterization and Cardiovascular Interventions 88.3(2016).;

⁴ Valgimigli, Marco, et al. "2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS." European Journal of Cardio-Thoracic Surgery 53.1 (2017): 34-78.

BIOFLOW studies, BIOTRONIK Sponsored Studies

	Ť			\boxtimes	\otimes	
BIOFLOW-I	30	2 sites 1 country	FIM	LLL at 9 months	Completed 12 months FU	NCT01214148
BIOFLOW-II	452	24 sites 8 countries	2:1 RCT Orsiro vs Xience	LLL at 9 months	Completed 60 months FU	NCT01356888
BIOFLOW-III	1356	43 sites 14 countries	One arm registry	TLF at 12 months	Completed 60 months FU	NCT01553526
	>7,700	(13)	Satellite registries	12-month TLF	Enrolling	
BIOFLOW-IV	525	46 sites 11 countries	2:1 RCT Orsiro vs Xience	TVF at 12 months	24 months FU available	NCT01939249
BIOFLOW-V	1334	91 sites 13 countries	2:1 RCT Orsiro vs Xience	TVF at 12 months	12 months FU available	NCT02389946
BIOFLOW-VI	440	11 sites 1 country	1:1 RCT Orsiro vs Xience	LLL at 9 months	Enrollment completed	NCT02870985
BIOFLOW-INDIA	120	1 country	Indian single-armed trial	9-month LLL	Completed	NCT01426139
BIOLUX-RCT	210	International	RCT vs. Pantera Lux in ISR	6-month LLL	Enrollment completed	NCT01651390
BIOFLOW-SV	1000	TBD 2 countries	All-comers registry	TLF at 12 months	TBD	TBD
BIOFLOW-DAPT	~2000	TBD	One arm registry	Composite 12 months	TBD	TBD

First-in-man Experience with Orsiro DES in De Novo Coronary Artery Lesions (BIOFLOW-I)

Design

Prospective, multi-centre, non-randomized, first in man trial

Objective

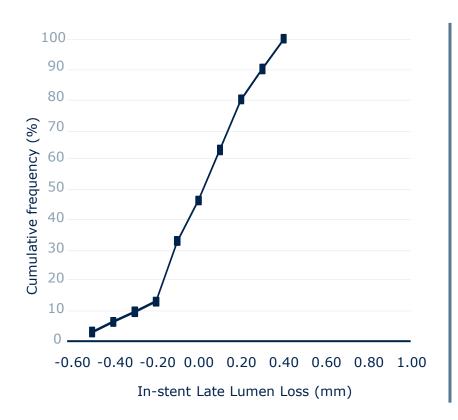
To assess the safety and clinical performance of the Orsiro DES in patients with single de novo coronary artery lesions

Coordinating Clinical Investigator

Prof. Martial Hamon, University Hospital of Caen, France

Principal Investigators

Dr. Rodica Niculescu, MD, PhD, FESC Dr. Dan Deleanu, MD, FESC


Primary Endpoint

In-stent Late Lumen Loss at 9 months

30 patients enrolled July 2009 Clinical follow-up at 1 month Clinical & angiographic follow-up at 4 months Clinical & angiographic follow-up at 9 months Clinical follow-up at 12, 24 & 36 months

Primary Endpoint In-stent Late Lumen Loss

n = 3	30
0.05 ± 0	.22 mm
n	%
0	0.0
0	0.0
0	0.0
2	6.7
2	6.7
	0.05 ± 0 n 0 0 0 2

9-month Drimary

Safety and Clinical Performance of Orsiro DES in the Treatment of Subjects with Single De Novo Coronary Artery Lesions (Lesion lengths ≤26 mm)

Design

An international, prospective, multi-center, randomized, controlled trial comparing the Orsiro DES to Xience Prime

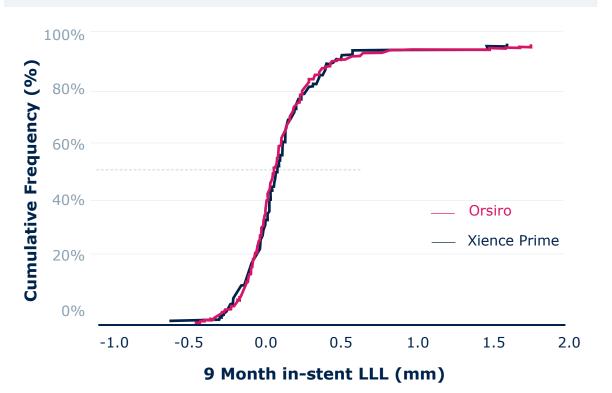
Objective

To compare the Orsiro stent with a bioabsorbable polymer to the XIENCE Prime stent with a durable polymer for the treatment of de novo coronary lesions with respect to non-inferiority for in-stent Late Lumen Loss (LLL) at 9 months

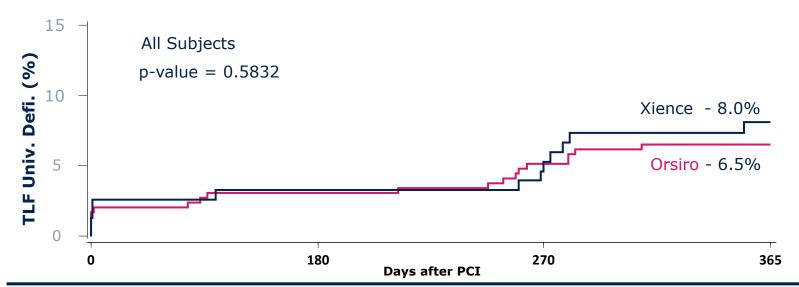
Coordinating Clinical Investigators

Prof. Stephan Windecker, Bern, Switzerland Dr. Thierry Lefèvre, Massy, France

In-stent Late Lumen Loss at 9 months



Primary Angiographic Endpoint In-stent Late Lumen Loss


Orsiro Xience p-value for non-inferiority

 0.10 ± 0.32 0.11 ± 0.29 < 0.0001

Sources: Windecker S. et al., Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer verolimus-Eluting Stent Results of the Randomized BIOFLOW-II Trial, Circ Cardiovasc Interv, DOI:10.1161/CIRCINTERVENTIONS.114.001441

Main Secondary Endpoints: TLF Rate at 12 Months

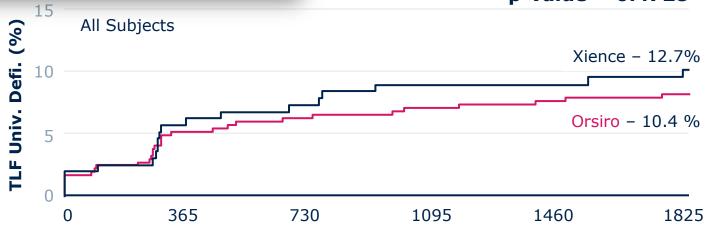
Target Lesion Failure Composites (%)	Orsiro n = 298	Xience Prime n = 154	p-value
Cardiac Death	0.7	0.7	0.98
Target vessel MI	2.7	2.6	0.95
TLR (Clinically driven)	3.5	4.7	0.54
CABG (Emergent)	0.0	0.0	>0.99

 TLF; a composite of cardiac death, target vessel MI, and clinically driven TLR JACC: CARDIOVASCULAR INTERVENTIONS

9 2018 THE AUTHORS, PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN

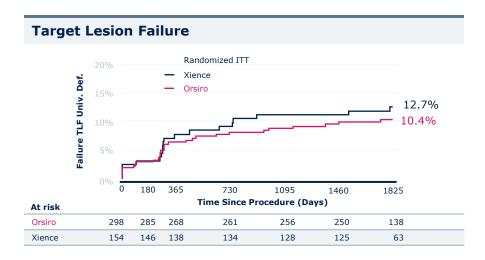
COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER

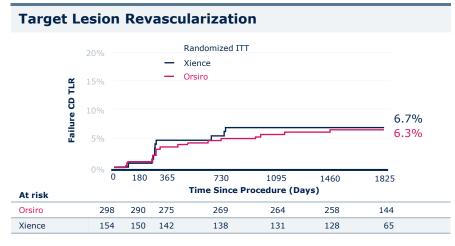
THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).


Comparison of a Novel Biodegradable Polymer Sirolimus-Eluting Stent With a Durable Polymer Everolimus-Eluting Stent

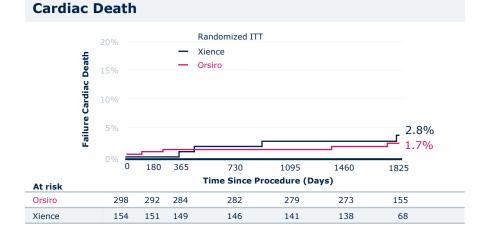
5-Year Outcomes of the Randomized BIOFLOW-II Trial

Thierry Lefèvre, MD, ^a Michael Haude, MD, ^b Franz-Josef Neumann, MD, ^c Karl Stangl, MD, ^d Carsten Skurk, MD, ^e Ton Slagboom, MD, ^f Manel Sabaté, MD, ^k Javier Goicolea, MD, ^h Paul Barragan, MD, ^k Stéphane Cook, MD, ^j Jean-Christophe Macia, MD, ^k Stephan Windecker, MD, ^l


VOL. 11, NO. 10, 2018


Days after PCI

Target Lesion Failure Composites (%)	Orsiro n = 298	Xience Prime n = 154	p-value
Cardiac Death	1.7	2.8	0.5043
Target vessel MI	3.4	3.3	0.9531
TLR (Clinically driven)	6.3	6.7	0.8501
CABG (Emergent)	0.0	0.0	>0.9999


Selected Endpoints at 60 Months

Stent Thrombosis Randomized ITT Failure Stent Thrombosis Xience P = 0.0882.8% 0.7% 365 730 1095 180 1460 1825 Time Since Procedure (Days) At risk Orsiro 298 292 284 279 273 155 Xience 154 151 149 146 141 138 67

Main Secondary Endpoints: Stent Thrombosis at 60 Months

Definite ST

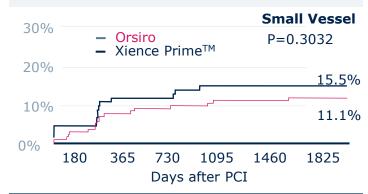
	Orsiro (n = 298)	Xience Prime (n = 154)
Acute (0-48h)	0 %	0 %
Subacute (48h-30d)	0 %	0 %
Late (>30d)	0 %	0 %
Very late (>12m)	0 %	0.7 %
Overall	0 %	0.7 %

Definite, Probable or Possible ST

	Orsiro (n = 298)	Xience Prime (n = 154)
Acute (0-48h)	0 %	0 %
Subacute (48h-30d)	0 %	0 %
Late (>30d)	0 %	0 %
Very late (>12m)	0.7 %	2.8 %
Overall	0.7 %*	2.8 %**

^{*} Two possible stent thrombosis

^{**} Four possible stent thrombosis Source: T. Slagboom, Poster, EuroPCR 2017



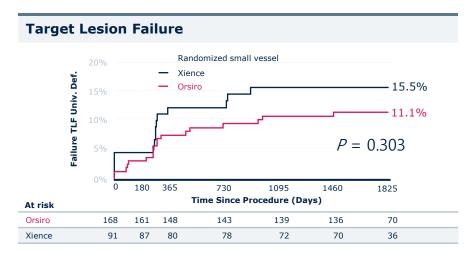
Small Vessel (≤ 2.75mm) **Subgroup Analysis**

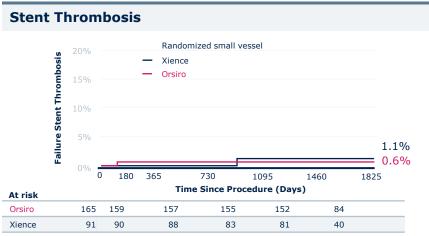
Small Vessel Subgroup Demographics & Lesion Characteristics

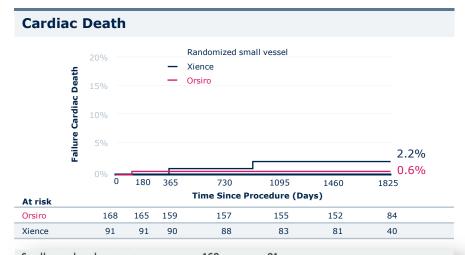
	Orsiro	Xience Prime
	Subjects = 168	Subjects = 91
Age (years)	62.9 ± 10.2	65.5 ± 9.0
Hypertension (%)	80.4	76.9
Hyperlipidemia (%)	69.6	68.1
History of MI (%)	33.9	26.4
Diabetes (%)	33.9	28.6
Insulin dependent (%)	29.8	30.8
Non-insulin dependent (%)	70.2	69.2
	Lesions = 195	Lesions = 109
Lesion length (mm)	13.93 ± 6.88*	13.08 ± 5.22*
RVD (mm)	2.49 ± 0.37	2.49 ± 0.33
Diameter stenosis (%)	67.55 ± 13.70	65.56 ± 14.47

Small Vessel subgroup TLF at 60 months

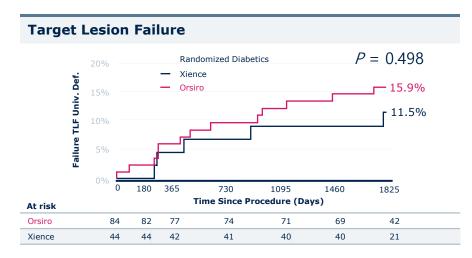
Small Vessel subgroup Results at 60 months

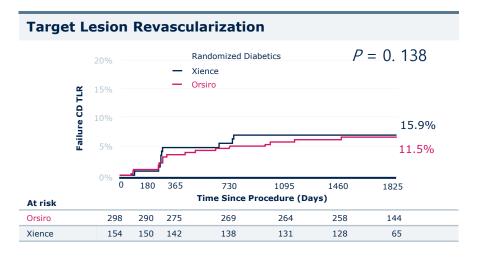

Target Lesion Failure Composites (%)	Orsiro n = 168	Xience Prime n = 91	p-value
Cardiac Death	0.6	2.2	0.2652
Target vessel MI	3.7	4.4	0.7380
TLR (Clinically driven)	8.7	8.9	0.9448
CABG (Emergent)	0.0	0.0	> 0.9999

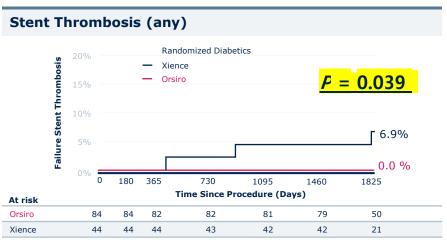

^{*} Analysis only possible for Orsiro n = 191, Xience Prime n = 108 Source: T. Slagboom, Poster, EuroPCR 2015; Sabate M. Oral presentation. EuroPCR, Paris, France, May 2014. Oral Presentation; Ruiz-Salmeron R. Poster presentation. TCT, Washington DC, USA, September 2014.

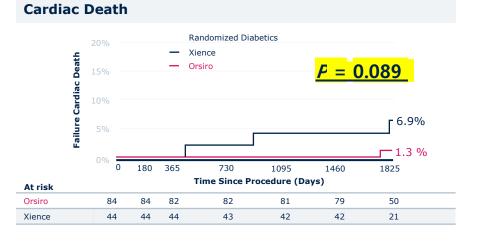

Small Vessel Subgroup

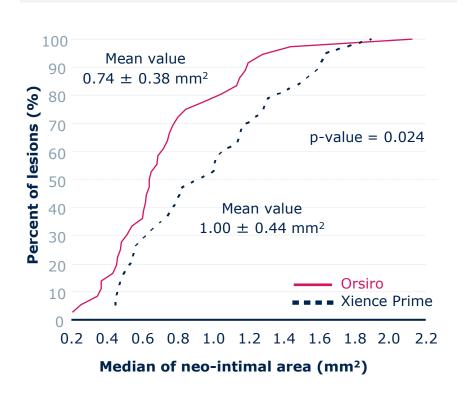
Selected Endpoints at 60 Months



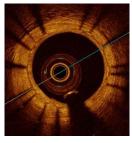

Small vessels subgroup, n	168	91		
<u>Death</u>	6 (3.7)	10 (11.3)	0.33 (0.12-0.90)	0.022
Cardiac death	1 (0.6)	2 (2.2)	0.28 (0.03-3.08)	0.265
MI, univ. def.	8 (4.9)	5 (5.6)	0.86 (0.28-2.63)	0.791
TV MI, univ. def.	6 (3.7)	4 (4.4)	0.81 (0.23-2.86)	0.738
Clinically indicated TLR	14 (8.7)	8 (8.9)	0.97 (0.41-2.32)	0.948
Clinically indicated TVR	25 (15.6)	12 (13.3)	1.16 (0.58-2.31)	0.676
Target lesion failure, univ. def.	18 (11.1)	<u>14 (15.5</u>)	0.69 (0.35-1.40)	0.303
Target vessel failure, univ. def.	27 (16.8)	18 (19.9)	0.80 (0.44-1.46)	0.475
Death or MI, univ. def.	<u>13 (8.0</u>)	14 (15.6)	0.50 (0.23-2.86)	0.066
Stent thrombosis	1 (0.6)	1 (1.1)	0.55 (0.03-8.84)	0.671
Definite	0 (0.0)	0 (0.0)	-	_
Probable	0 (0.0)	0 (0.0)	_	-


Source: Lefèvre et al. on behalf of BIOFLOW-II investigators, J Am Coll Cardiol Intv 2018;11:995–1002


Diabetic Subgroup Analysis Selected Endpoints at 60 Months



Source: Lefèvre et al. on behalf of BIOFLOW-II investigators, J Am Coll Cardiol Intv 2018;11:995–1002



Neo-intimal area

Apposition and coverage

	Orsiro	Xience Prime	p-value
Well-apposed struts	98.6%	98.8%	0.62
Incomplete Strut Apposition	1.0%	0.6%	0.32
Non-apposed side branch	0.4%	0.6%	0.37
Sum	100%	100%	
Covered Struts	98.3%	97.5%	0.042

Conclusion

The 5 years results of this prospective, randomized, study confirms the safety and efficacy of the Orsiro SES, in the whole patient population, as well as in high risk diabetic and small vessel subgroups

Target Lesion Failure

Clinical event rates in the all subjects-, diabetic- and small vessel cohorts were comparable between Orsiro and Xience $Prime^{TM}$ up to 5 years

Stent Thrombosis

No Definite or Probable ST occurred in the whole BIOFLOW-II population or in pre-specified diabetic and small vessel subgroups in the Orsiro arm through 5 years

For Xience, one case of very late definite Stent Thrombosis was observed. In diabetic subgroup stent thrombosis rate was significantly lower in Orsiro study arm

Registry for an All-comers Patient Population with the Orsiro DES in Daily Clinical Practice

Design

An international, prospective, multi-center open-label, registry of the Orsiro DES in daily clinical practice

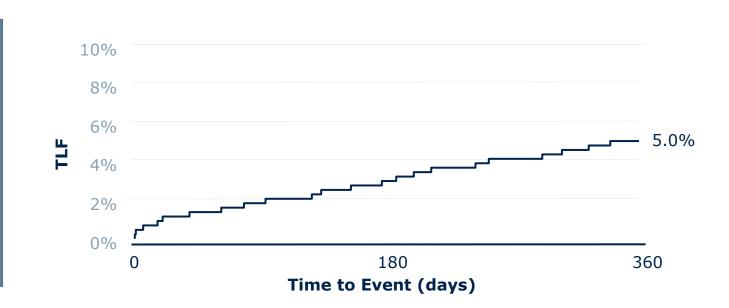
Objective

Evaluate safety and clinical performance of the Orsiro drug eluting stent with a bioabsorbable polymer in a large patient population in standard clinical care

Coordinating Investigator

Prof. Dr. Johannes Waltenberger, Universitätsklinikum Münster, Germany

Target Lesion Failure (TLF) at 12 months

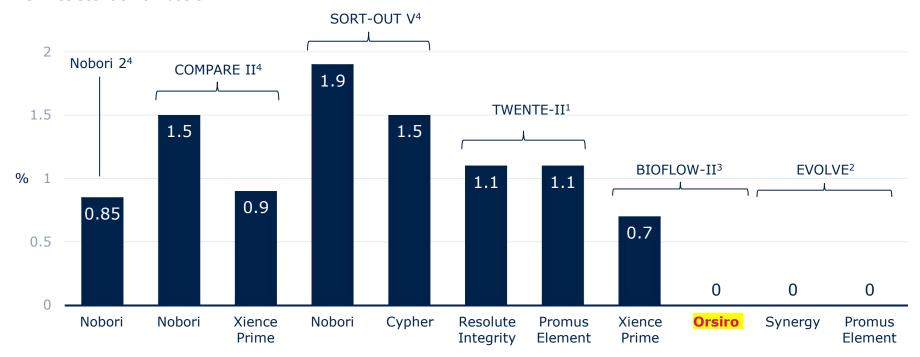


Primary & Major Secondary Endpoint

Major Secondary Endpoints

Devices	n = 1,738
Device success	98.8%
Procedures	n = 1,356

Target Lesion Failure	Orsiro
Composites (%)	n = 298
Cardiac Death	1.3
Target vessel MI	2.3
TLR (Clinically driven)	3.0
CABG (Emergent)	0.0


 $Source: Waltenberger\ et\ al.\ EuroIntervention\ 2015;\ 10-online\ publish-ahead-of-print\ March\ 2015.$

Stent Thrombosis Results at 60 Months

Stent Thrombosis out to 5 years for other coronary stents

Definite stent thrombosis*

^{*} Biodegradable polymer biolimus-eluting stents versus durable polymer everolimus-eluting stent in patients with coronary artery disease. G.J. Vlachojannis et. al, JACC: Cardiovascular Interventions, 2017(10):1215-21

^{1 5-}year outcome following randomized treatment of all-comers with zotarolimus-eluting Resolute Integrity and everolimus-eluting PROMUS element coronary stents. P. Zocca et.al, JACC: Cardiovascular Interventions, 2018(11) 462-9

Final five-year outcomes after implantation of biodegradable polymer-coated biolimus-eluting stents versus durable polymer-coated sirolimus-eluting stents. L. Jakobsen, et.al, 2017 13(11):1336-44

² Final five-year clinical outcomes in the EVOLVE trial: a randomised evaluation of a novel bioabsorbable polymer-coated, everolimus-eluting stent. I.T. Meredith et.al, EuroIntervention. 2018;13:2047-2050.

³ Comparison of a noverl biodegradable polymer sirolimus-eluting stent with a durable polymer everolimus-eluting stent. T. Lefèvre et.al, JACC

⁴ Waltenberger et al. on behalf of BIOFLOW-III Investigators, EuroPCR 2018 - Lecture

Comparison of Ultrathin Sirolimus-Eluting Bioresorbable Polymer with Thin Everolimus-Eluting Durable Polymer Stents

Design

Prospective, multi-center, 2:1 randomized controlled IDE (Investigational Device Exemption) trial.

Objective

Assess the safety and effectiveness of Orsiro in the treatment of patients with up to three de novo or restenotic lesions.

Coordinating Clinical Investigators

Dr. David E. Kandzari, Piedmont Heart Institute, Atlanta, USA Dr. Jacques Koolen, Catharina Ziekenhuis, Eindhoven, Netherlands

Primary Endpoint

Target Lesion Failure (TLF) at 12 months, defined as the composite of cardiovascular death, target vessel-related myocardial infraction (MI), or ischemia-driven TLR

BIOFLOW-VITT:

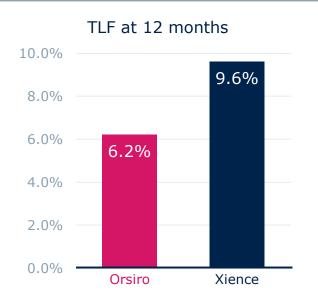
1334 Patients randomized across 91 centers in the US, Canada, Europe, Israel and Asia Pacific region 2:1 randomization Orsiro Xience Prime (n=884)(n=450)Clinical follow-up at 1 and 6 months 12-month clinical follow-up Annual clinical follow-up to 5 years

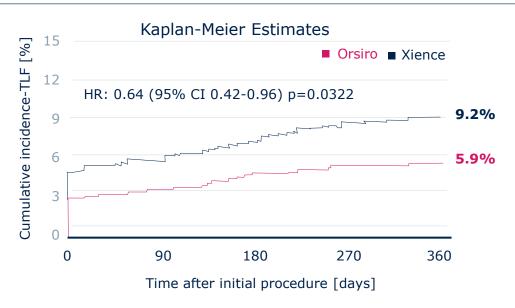
Procedural Results

	Orsiro (n = 884)	Xience (n = 450)	P-Value
Lesion success*	1102/1107 (99.6%)	579/583 (99.3%)	0.505
Device success†	1082/1107 (97.7%)	566/583 (97.1%)	0.415
Procedure success [‡]	827/881 (93.9%)	401/445 (90.1%)	0.019

Procedural success was significantly higher with Orsiro, principally driven by a higher rate of in-hospital MI with Xience. Specifically, the peri-procedural MI was higher in the Xience group.

- * Lesion success defined as attainment of < 30% residual stenosis of the target lesion using any percutaneous method.
- † Device success defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only.
- ‡ Procedure success defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only without occurrence of in-hospital major adverse cardiac events (MACE; composite of all-cause death, Q-wave or non-Q-wave MI, and any clinical-driven TLR).


Results: 30-Day Outcomes


	Orsiro (n = 884)	Xience (n = 450)	P-Value
All-cause death	0.1%	0.2%	1.000
Myocardial Infarction	4.3%	6.9%	0.050
In-Hospital MI	3.9%	6.7%	0.029
TLR	0.5%	0.7%	0.694
Stent Thrombosis	0.3%	0.2%	1.000
TLF	4.2%	7.1%	0.026
TVF	4.3%	7.1%	0.037

Results: 12-month Outcomes

	Orsiro (n = 884)	Xience (n = 450)	P-Value
Target lesion failure	52/833 (6.2%)	41/427 (9.6%)	0.040
Cardiac death	1/831 (0.1%)	3/425 (0.7%)	0.115
Target-vessel MI	39/831 (4.7%)	35/424 (8.3%)	0.016
Clinically-driven TLR	17/832 (2.0%)	10/422 (2.4%)	0.686

Source: Kandzari D, BIOFLOW V Comparison of UltraThin Sirolimus-Eluting Bioresorbable Polymer with Thin Everolimus- Eluting Durable Polymer Stents, Oral presentation ESC 2017

Results: 12-month Outcomes

	Orsiro (n = 884)	Xience (n = 450)	P-Value
Death from any cause	7/837 (0.8%)	6/428 (1.4%)	0.382
Any MI	41/832 (4.9%)	37/425 (8.7%)	0.013
Q-wave	1/831 (0.1%)	4/422 (1.0%)	0.047
Non-Q-wave	40/831 (4.8%)	34/425 (8.0%)	0.031
Cardiac death or any MI	42/833 (5.0%)	39/427 (9.1%)	0.007
MACE	59/839 (7.0%)	44/429 (10.3%)	0.051
Target-vessel failure	60/834 (7.2%)	45/427 (10.5%)	0.052
Target-vessel myocardial infarction	39/831 (4.7%)	35/424 (8.3%)	0.016
Clinically-driven target-vessel revascularization	27/833 (3·2%)	15/422 (3.6%)	0.7430

Source: Kandzari D et al, Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a rondomised trial, The Lancet, 2017

Results: 12-month Stent Thrombosis

	Orsiro (n = 884)	Xience (n = 450)	P-Value
Timing of Event (Any ST)			
Acute (≤ 24 hours)	0.1%	0.0%	1.000
Sub-acute (> 24 hours and ≤ 30 days)	0.2%	0.2%	1.000
Late (> 30 days and ≤ 1 year)	0.1%	0.9%	0.047
Stent Thrombosis			
Any Stent Thrombosis	0.5%	1.2%	0.175
Definite	0.5%	0.7%	0.694
Definite/Probable	0.5%	0.7%	0.694
Timing of Event (Definite/Probable ST)			
Acute (≤ 24 hours)	0.1%	0.0%	1.000
Sub-acute (> 24 hours and ≤ 30 days)	0.2%	0.2%	1.000
Late (> 30 days and ≤ 1 year)	0.1%	0.5%	0.264

Source: Kandzari D et al, Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial, The Lancet, 2017

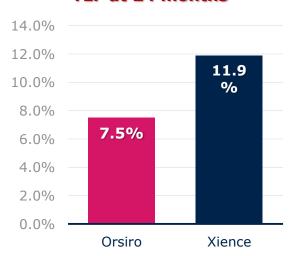
ARTICLE IN PRES

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY

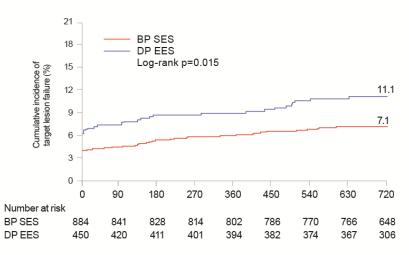
© 2018 THE AUTHORS, PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN
COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER
THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Results: 24-month Outcomes

BIOFLOW-V


Ultrathin Bioresorbable Polymer Sirolimus-Eluting Stents Versus Thin Durable Polymer Everolimus-Eluting Stents After Myocardial Infarction

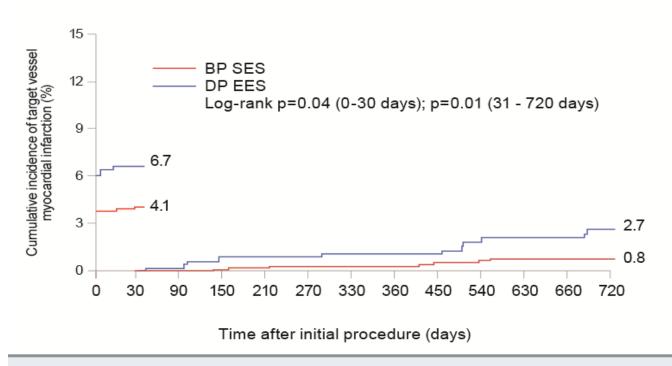
David E. Kandzari, MD, ^a Jacques J. Koolen, MD, PhD, ^b Gheorghe Doros, PhD, ^c Joseph J. Massaro, PhD, ^d Hector M. Garcia-Garcia, MD, PhD, ^e Johan Bennett, MD, PhD, ^f Ariel Roguin, MD, PhD, ^g Elie G. Gharib, MD, ^h Donald E. Cutlip, MD, ⁱ Ron Waksman, MD, ^e for the BIOFLOW V Investigators


	Orsiro (n=884)	Xience (n=450)	P-Value
Target lesion failure	62/823 (7.5%)	49/413 (11.9%)	0.015
Cardiac death	5/817 (0.6%)	2/407 (0.7%)	1.0
Target-vessel MI	43/816 (5.3%)	39/410 (9.5%)	0.016
Clinically-driven TLR	21/816 (2.6%)	20/407 (4.9%)	0.04

VOL. ■, NO. ■, 2018

TLF at 24 months

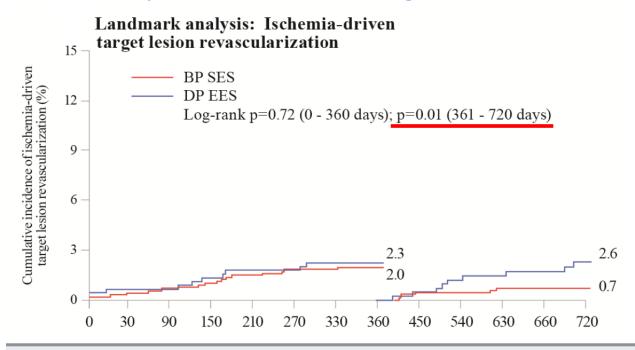
Kaplan-Meier Estimates



Time after initial procedure (days)

Results: 24-month Outcomes

Landmark Analysis TV-MI 30 days to 24 months



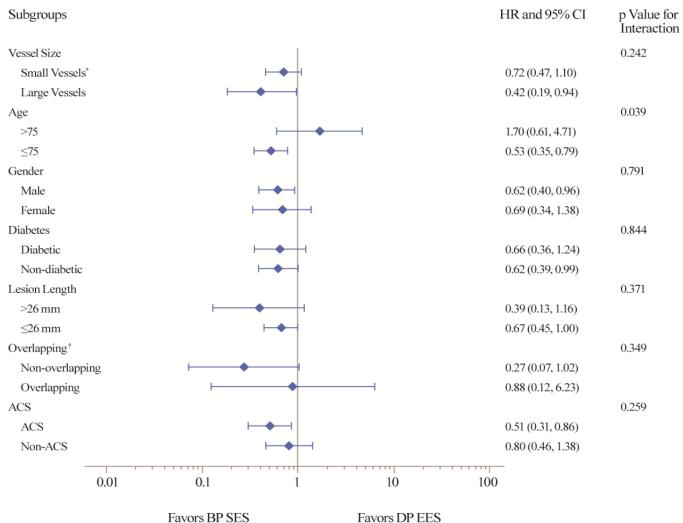
Lower target-vessel related MI (5.3% vs 9.5%, P=0.01) at 2 years, both early (\leq 30 days) and late (31 days to 2 years)

Results: 24-month Outcomes

Landmark analysis **Ischemia-Driven Target Lesion Revascularization** to 24 months

Lower ischemia-driven TLR, driven by differences in late (>1 year) TLR (2.6% vs 4.9%, P=0.04)

Results: 24-month Stent Thrombosis



	Orsiro (n=884)	Xience (n=450)	P-Value
Definite	0.5%	1.2%	0.17
Probable	0	0	-
Definite/Probable/Possible	0.7%	1.5%	0.23
Definite/Probable Stent Thrombosis			
Early	0.3%	0.2%	1.00
Late (>30 days and ≤1 year)	0.1%	0.5%	0.26
Very late (> 1 year and ≤2 years)	0	0.5%	0.11
Late/Very Late (>30 days ≤2 years)	0.1%	1.0%	0.045

DAPT adherence at 2 years: 45.6% (368/807) BP SES; 45.1% (181/401) DP EES; P=0.88

Subgroup Analysis: 24-month TLF

Conclusion

- Through **2 years in the randomized BIOFLOW V trial**, significant differences in TLF and target vessel MI observed at 1 year were maintained in addition to emergence of other safety and efficacy differences that favor an ultrathin strut BP SES over a contemporary generation thin strut DP EES
 - Lower TLF (7.5% vs 11.9%, *P*=0.015)
 - Lower target vessel related MI (5.3% vs 9.5%, P=0.01), both early (≤30 days) and late (31 days to 2 years)
- Lower ischemia-driven TLR, driven by differences in late (>1 year) TLR (2.6% vs 4.9%, P=0.04)

Lower late/very late definite and definite/probable ST (0.1% vs 1.0%, P=0.045)

BIOFLOW-V ACS 1 YEAR

ORIGINAL ARTICLE

Subgroup Analysis Comparing Ultrathin, Bioresorbable Polymer Sirolimus-Eluting Stents Versus Thin, Durable Polymer Everolimus-Eluting Stents in Acute Coronary Syndrome Patients

BIOFLOW V Acute Coronary Syndromes Subgroup

Design

Prospective, multi-center, 2:1 randomized controlled IDE (Investigational Device Exemption) trial.

ACS subgroup analysis of the BIOFLOW V prospective randomized trial

Coordinating Clinical Investigators

David E Kandzari, MD, Ron Waksman, MD et al

Primary Endpoint

Target Lesion Failure (TLF) at 12 months, defined as the composite of cardiovascular death, target vessel-related myocardial infraction (MI), or ischemia-driven TLR

BIOFLOW-V ACS Subgoup:

ACS patients without ST-segment-elevation myocardial infarction (MI; 454 Orsiro and 223 Xience) were identified

Post-hoc analysis

Orsiro (n=454)

Clinical follow-up at 1 and 6 months

12 month follow-up, TLF Primary Endpoint

2,3,4,5-year follow-up

Procedural Results

	Orsiro	Xience	P-Value
Lesion success*	99.6% (568/570)	99.7% (297/298)	0.967
Device success†	97.5% (556/570)	96.6% (288/298)	0.643
Procedure success‡	94.7% (428/452)	89.7% (200/223)	0.023

Procedural success was significantly higher with Orsiro, principally driven by a higher rate of in-hospital MI with Xience. Specifically, the **peri-procedural MI was higher in the Xience group.**

- * Lesion success defined as attainment of < 30% residual stenosis of the target lesion using any percutaneous method.
- † Device success defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only.
- ‡ Procedure success defined as attainment of < 30% residual stenosis of the target lesion using the assigned study stent only without occurrence of in-hospital major adverse cardiac events (MACE; composite of all-cause death, Q-wave or non-Q-wave MI, and any clinical-driven TLR).

Source: Ron Waksman et al, Subgroup Analysis Comparing Ultrathin, Bioresorbable Polymer Sirolimus-Eluting Stents Versus Thin, Durable Polymer Everolimus-Eluting Stents in Acute Coronary Syndrome Patients, Circ Cardiovasc Interv. 2018

Results: 30-Day Outcomes

	Orsiro (n=884)	Xience (n=450)	P-Value
All-cause death	0.0% (0/454)	0.5% (1/222)	0.328
Protocol defined myocardial infarction	3.3% (15/454)	7.2% (16/222)	0.030
Stent thrombosis			
Acute (≤ 24 h)	0.2% (1/454)	0.0% (0/222)	1.000
Subacute (> 24 h and ≤ 30 d)	0.2% (1/454)	0.0% (0/222)	1.000
TLF	2.9% (13/454)	7.7% (17/222)	0.008
TVF	3.1% (14/454)	7.7% (17/222)	0.010

Source: Ron Waksman et al, Subgroup Analysis Comparing Ultrathin, Bioresorbable Polymer Sirolimus-Eluting Stents Versus Thin, Durable Polymer Everolimus-Eluting Stents in Acute Coronary Syndrome Patients, Circ Cardiovasc Interv. 2018

Results: 12-month Outcomes

	Orsiro (n=884)	Xience (n=450)	P-Value
Target lesion failure	5.6% (24/426)	11.0% (23/209)	0.023
Cardiac death	0.0% (0/424)	1.0% (2/208)	0.108

Secondary End Points	BP-SES (N=454 Subjects)	DP-EES (N=223 Subjects)	Difference (95% CI)	P Value		
Protocol-defined target vessel-MI	3.5% (15/425)	9.7% (20/207)	-6.13% (-11.12% to -2.14%)	0.003		
Q-wave type	Q-wave type					
Q-wave	0.2% (1/425)	1.0% (2/206)	-0.74% (-3.24% to 0.56%)	0.250		
Non-Q-wave	3.3% (14/424)	9.2% (19/207)	-5.88% (-10.77% to -1.99%)	0.004		
Timing						
Periprocedural PCI	3.1% (13/424)	7.2% (15/207)	-4.18% (-8.72% to -0.67%)	0.023		
Spontaneous	0.5% (2/425)	2.4% (5/206)	-1.96% (-5.10% to -0.10%)	0.041		
Magnitude*	Magnitude*					
Periprocedural†						
CK-MB or troponin >3×ULN	2.6% (12/454)	6.7% (15/223)	-4.08% (-8.31% to -0.84%)	0.019		
CK-MB or troponin >5×ULN	1.3% (6/454)	3.6% (8/223)	-2.27% (-5.67% to 0.07%)	0.080		
CK-MB or troponin >10×ULN	0.7% (3/454)	1.3% (3/223)	-0.68% (-3.26% to 0.86%)	0.401		

Durable Polymer Everolimus-Eluting Stents in Acute Coronary Syndrome Patients, Circ Cardiovasc Interv. 2018

Conclusion

In the ACS subgroup population of the BIOFLOW V study, treatment with BP SES compared with DP EES was associated with a significantly lower rate of 12-month TLF

The difference driven by significantly lower peri-procedural MI and spontaneous MI.

These findings support treatment with an ultrathin strut BP SES in ACS patients undergoing PCI.

BIOTRONIK-Safety and Clinical PerFormance of the Drug ELuting Orsiro Stent in the Treatment of Subjects With De novo Coronary Artery Lesions – VI: BIOFLOW-IV

Design

Prospective, multi-centre, non-inferiority, 1:1 randomized-controlled trial

 \bigcirc

Objective

Evaluate the efficacy and safety of the Orsiro drug eluting stent in the treatment of coronary artery disease

 $\oplus_{\mathbb{Z}}$

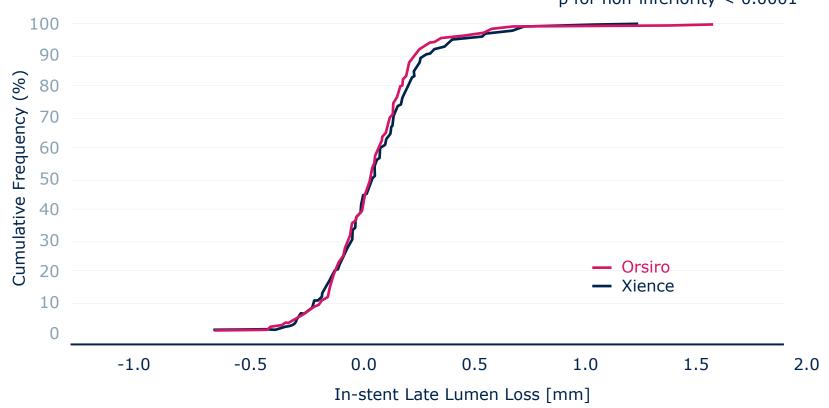
Coordinating Investigator

Prof. Yuejin Yang, FuWai Hospital, National Center For Cardiovascular Disease, Beijing, China

- Primary Endpoint In-stent Late Lumen Loss (LLL) at 9 months (assessed by QCA)
 - Independent Corelab Assessment
 MedStar Health Research Institute,
 Washington DC, USA

445 subjects with de novo coronary artery stenosis 1:1 randomization Orsiro* **Xience Prime*** (n = 223)(n = 222)Clinical follow-up at 1 and 6- months Angiographic follow-up at 9 months Clinical follow-up at 12 months Clinical follow-up to 5 years

Y. Yang et al. BIOFLOW-IV Oral Presentation, CIT 2018 - Late Breaking Clinical Trials & First Report Investigations, Su Zhou, Mar. 23, 2018


^{* 3} withdrawal of consent in Orsiro group, 2 withdrawal of consent in Xience group; did not receive device treatment

Primary Endpoint In-stent LLL at 9 Months (Lesion Level)

Orsiro: 0.05 ± 0.21 ; 95% CI 0.03; 0.08 Xience: 0.07 ± 0.22 ; 95% CI 0.04; 0.10

p for non-inferiority < 0.0001

Target Lesion Failure at 12 Months

TLF and composites	Orsiro	Xience	p-value
Target Lesion Failure (%)	2.3 (5/218)	1.8 (4/220)	0.7505
Cardiac Death (%)	0.5 (1/218)	0.0 (0/220)	0.4977
Target Vessel MI (%)	1.8 (4/218)	0.9 (2/220)	0.4472
Clinically-driven TLR (%)	0.0 (0/217)	0.9 (2/220)	0.4989
CABG (%)	0.0 (0/217)	0.5 (1/220)	1.0000

Secondary Clinical Outcomes at 12 Months

Endpoints	Orsiro	Xience	p-value
Target Vessel Failure (%)	2.3 (5/218)	2.3 (5/220)	1.0000
Cardiac Death (%)	0.5 (1/218)	0.0 (0/220)	0.4977
Any MI (%)	2.3 (5/217)	0.9 (2/220)	0.2823
Clinically- driven TVR (%)	0.0 (0/217)	1.8 (4/220)	0.1233

Endpoints	Orsiro	Xience	p-value
Stent thrombosis (def/prob) (%)	0 (0/217)	0 (0/217)	Not applicable

Conclusion

The BIOFLOW-VI study confirms the safety and efficacy of the Orsiro device compared with Xience in Chinese patients:

- The non-inferiority of Orsiro confirmed with regards to In-stent LLL at 9 months (p<0.0001), which is comparable to BIOFLOW II results
- Target Lesion Failure rates are low at 12 months in both arms with no statistically significant differences between the individual composites, which are also comparable with other clinical trials in Western and Asian populations
- No definite / probable stent thrombosis reported up to 12 months

Take-Home Message

From BIOFLOW studies, Orsiro stents have shown ...

- ... the improved clinical and angiographic outcomes with unique novel advantageous characteristics.
- ... the balanced efficacy and safety through many stepwise studies.
 - Expanding the indication and implication, especially for high-risked patients and lesions.
- The recent long-term results of Bioflow studies confirmed the safety and efficacy of the Orsiro SES, in the whole patient population, as well as in high risk subgroups

With the Love of God, Free Humankind from Disease and Suffering

Thank you for your attention!

