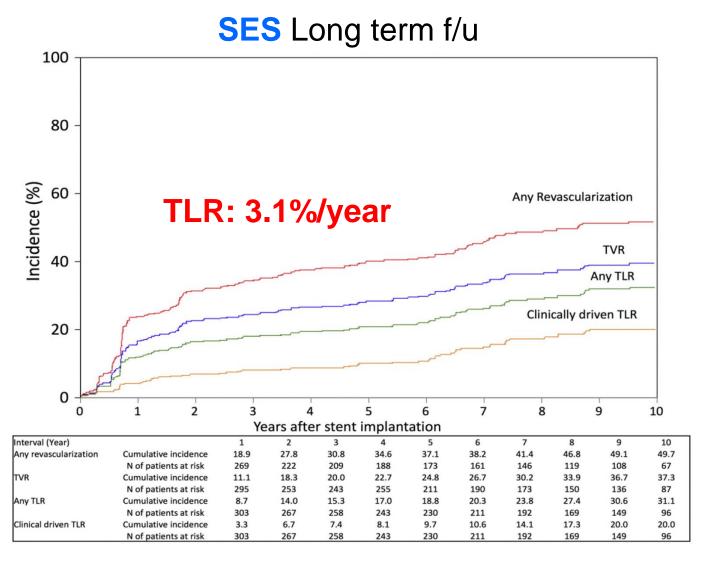
Current Treatment Option for DES Failure

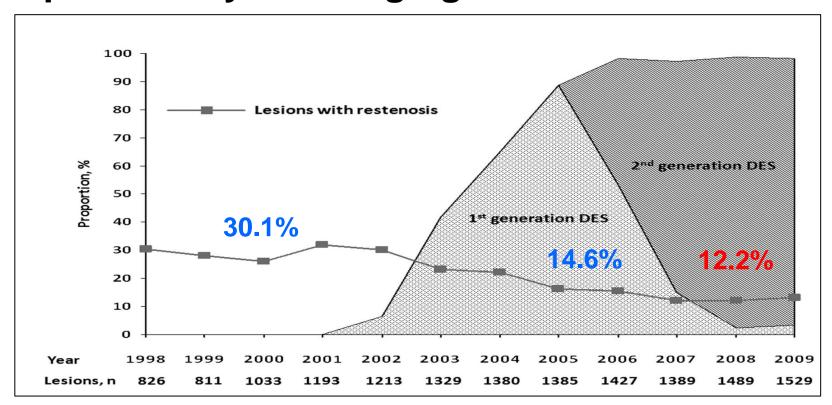
Content

DES ISR, Still remained challenging problem


Therapeutic strategy for DES ISR

Current treatment option for DES ISR

Treatment of recurrent DES ISR


Other treatment option for DES ISR

DES failure: Still challenging

DES ISR is Still Challenging

 Although DES have drastically reduced the incidence of ISR, treatment of DES-ISR is particularly challenging.

DES ISR is differ from BMS ISR

Table 1 Comparison of Principal Features of Restenotic Tissue After Bare-Metal and Drug-Eluting Stent Implantation								
	Bare-Metal Stent Restenosis	Drug-Eluting Stent Restenosis						
Imaging features								
Angiographic morphology	Diffuse pattern more common	Focal pattern more common						
Optical coherence tomography tissu properties	Homogeneous, high- e signal band most common	Layered structure or heterogeneous most common						
Time course of late luminal loss	Late loss maximal by 6–8 months	Ongoing late loss out to 5 years						
Histopathological feat	ures							
Smooth muscle cellularity	Rich	Hypocellular						
Proteoglycan conter	nt Moderate	High						
Peri-strut fibrin and inflammation	Occasional	Frequent						
Complete endothelialization	3–6 months	Up to 48 months						
Thrombus present	Occasional	Occasional						
Neoatherosclerosis	Relatively infrequent, late	Relatively frequent, accelerated course						

Drug resistance

Hypersensitivity

Stent under-expansion

Stent strut fracture

Non-uniform stent str ut coverage

Gap in stent coverag e

Residual uncovered a therosclerotic lesion

geographic miss

Treatment of DES ISR had poor outcomes than in BMS ISR

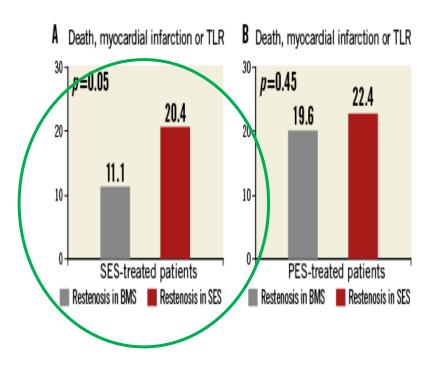

Angiographic outcomes

Table 2. Angiographic outcomes at 6-8 months: SES-treated and PES-treated patients.

SES-treated patients	SES for SES restenosis	SES for BMS restenosis	<i>p</i> -value
Patients	190	91	
Minimal luminal diameter, in-segment, mm	1.95±0.73	2.07±0.69	0.16
Stenosis, in-segment, %	34.0±20.9	27.6±19.4	0.015
Late loss, in-stent, mm	0.41±0.66	0.21±0.59	0.007
Recurrent binary restenosis	37 (19.5)	13 (14.3)	0.29
	PES for SES	PES for BMS	
PES-treated patients	restenosis	restenosis	<i>p</i> -value
PES-treated patients Patients			<i>p</i> -value
·	restenosis	restenosis	<i>p</i> -value 0.78
Patients	restenosis 191	restenosis 92	
Patients Minimal luminal diameter, in-segment, mm	restenosis 191 1.96±0.67	92 1.94±0.72	0.78
Patients Minimal luminal diameter, in-segment, mm Stenosis, in-segment, %	restenosis 191 1.96±0.67 32.7±18.6	92 1.94±0.72 33.5±22.2	0.78

BMS: bare metal stent; PES: paclitaxel-eluting stent; SES: sirolimus-eluting stent

MACE

Pooled analysis of ISAR-DESIRE and ISAR-DESIRE 2 trials

Byrne RA, et al. EuroIntervention 2013;9:797-802

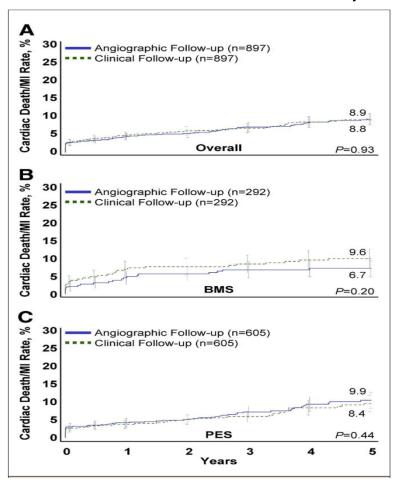
Content

DES ISR, Still remained challenging problem

Therapeutic strategy for DES ISR

Current treatment option for DES ISR

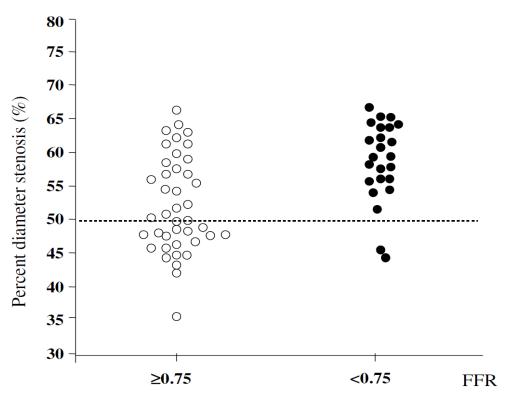
Treatment of recurrent DES ISR


Other treatment option for DES ISR

Avoid Oculo-stenotic reflex

TLR Rates, %

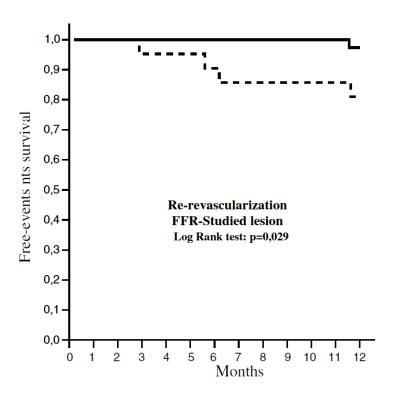
A 30 Angiographic (n=897) Clinical (n=897) 25 TLR Rate, % OR 1.79 [1.35, 2.36] 20 18.3 15 11.1 10 Overall P<0.001 В OR 1.34 30 Angiographic (n=292) Clinical (n=292) 23.6 25 TLR Rate, % 18.9 20 15 OR 1.34 [0.90, 2.01] 10 **BMS** P=0.17C 30 Angiographic (n=605) **OR2.37** Clinical (n=605) 25 **TLR Rate, %** 20 OR 2.37 [1.60, 3.53] 15.9 15 10 7.4 PES P<0.001


Cardiac Death/MI Rates, %

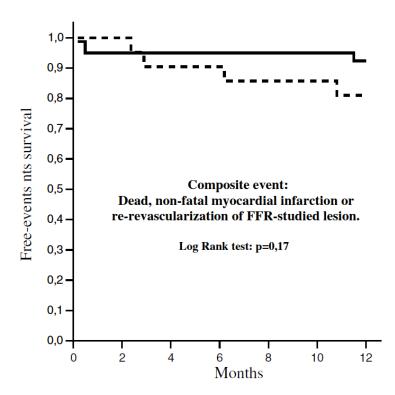
Pooled analysis taxus IV, V and liberte

Years

FFR Guided Treatment of ISR Lesions



51.2% of angiographic restenosis (DS ≥ 50%) presented a FFR ≥ 0.75


Fig. 2 Distribution of lesions according to percentage of diameter stenosis and significance of fractional flow reserve. (Shaded circles: rerevascularized lesions. White circles: medically treated lesions.)

FFR Guided Treatment of ISR Lesions

Revascularization

Composite end points

Patients with non-treated lesions (FFR≥0.75)

---- Patients with treated lesions (FFR<0.75)

FFR Guided Treatment of DES ISR Lesions

MACE

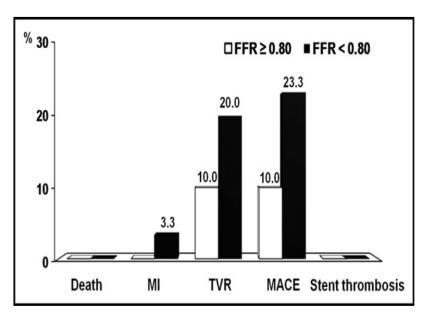


Figure 2. Twelve-month clinical outcomes of restenotic lesions after DES implantation according to FFR. Deferred lesions (FFR \geq 0.80) demonstrated tendency toward lower incidence of major adverse cardiac events. All p values >0.05.

Event free survival

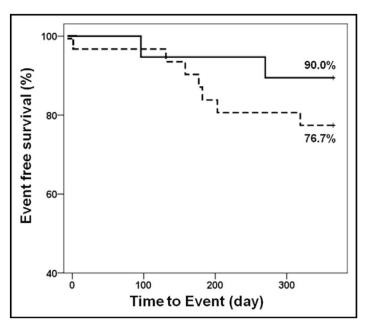
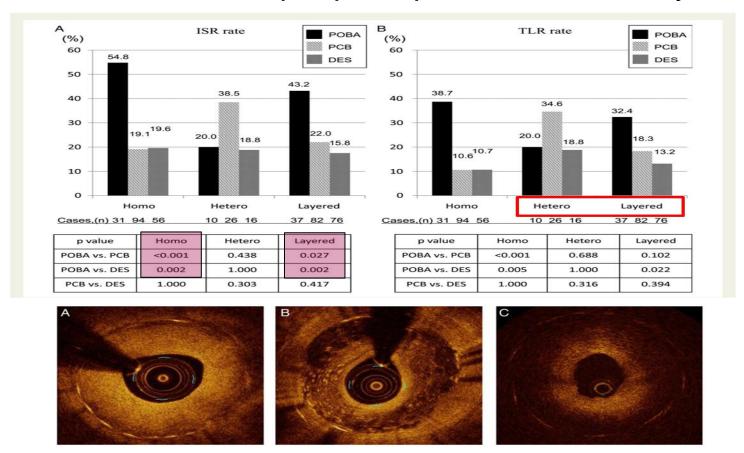



Figure 3. Kaplan-Meier estimates of cumulative freedom from composite cardiac events, including death, myocardial infarction, TVR, and stent thrombosis during 12-month follow-up in patients with restenotic lesions after DES implantation, for whom interventional procedure was deferred (*solid line*) or in whom an additional intervention was performed (*dotted line*) according to FFR (<0.80). p >0.05.

Role of Intravascular Imaging

- Detect the presence of neointimal hyperplasia, device under-expansion, or edge problems, EEM
- OCT: pattern of neointimal hyperplasia, neoatherosclerosis, plaque rupture, intracoronary thrombus

Tada T, et al. EHJ CV imaging 2015;16:1101-11

Adequate Pre-dilation is crucial

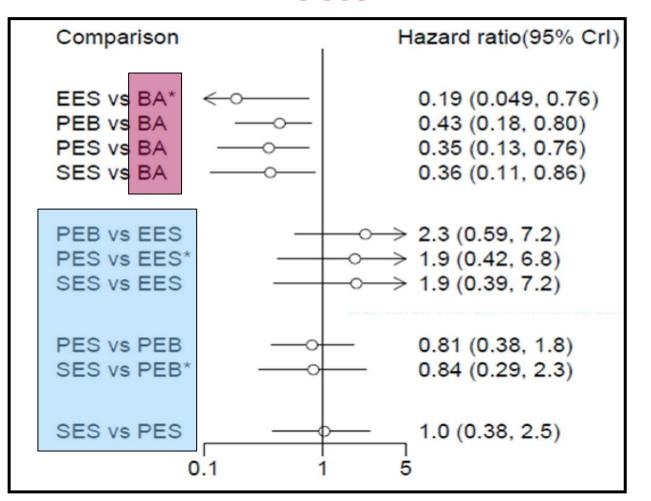
 Lesion pre-dilation with or without noncompliant balloon remains important to treat potential underlying stent under-expansion

Content

DES ISR, Still remained challenging problem

Therapeutic strategy for DES ISR

Current treatment option for DES ISR


Treatment of recurrent DES ISR

Other treatment option for DES ISR

Network Meta analysis of Randomized Controlled Trials

8 studies, 326 TVR over 1718 patient-years f/u in DES-ISR lesions

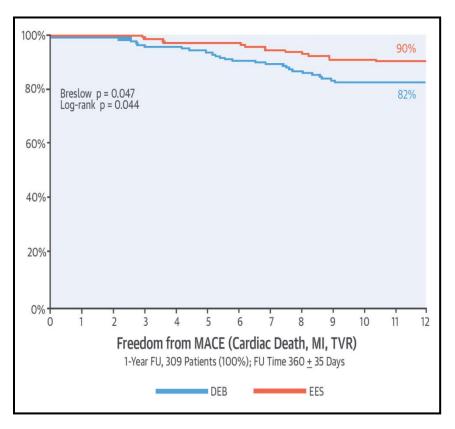
TVR

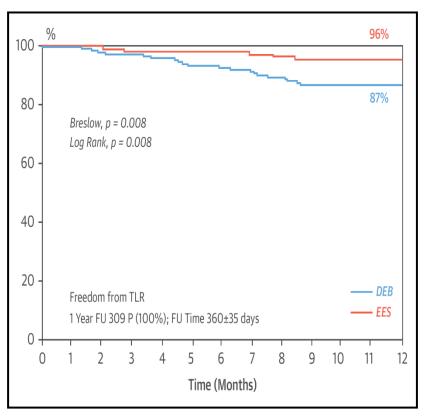
P<0.05

P=NS

RIBS IV

PEB (n=154) vs. EES (n=155) in DES ISR Multicenter, randomized clinical trial




RIBS IV

PEB (n=154) vs. **EES** (n=155) in **DES** ISR

Multicenter, randomized clinical trial

MACE TLR

Meta-analysis

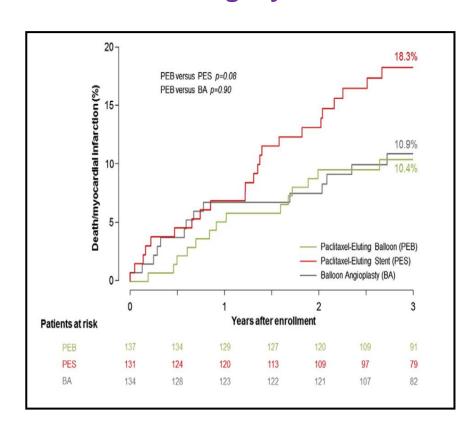
% DS

		EES	DCB	SES	PES	VBT	BMS	BA	ROTA
EES	S	99.6 (0.98)	-9.0% (-15.8 to -2.2)	-9·4% (-17·4 to -1·4)	-10·2% (-18·4 to -2·0)	-19·2% (-28·2 to -10·4)	-23·4% (-36·2 to -10·8)	-24·2% (-32·2 to -16·4)	-31·8% (-44·8 to -18·6)

Binary restenosis

	EES	DCB	SES	PES	VBT	BMS	BA	ROTA
EES	98.5 (0.92)	0.60 (0.30-1.19)	0.44 (0.19-0.99)	0.42 (0.19-0.92)	0.20 (0.09-0.45)	0.11 (0.04-0.28)	0.10 (0.05-0.22)	0.06 (0.02-0.16)

TLR


	EES	DCB	PES	SES	VBT	BMS	ROTA	BA
EES	99.1 (0.97)	0.36 (0.14-0.94)	0.34 (0.12-1.00)	0.34 (0.12-0.97)	0.17 (0.06-0.51)	0.14 (0.04-0.47)	0.09 (0.03-0.31)	0.09 (0.03-0.25)

ISAR-DESIRE 3

Diameter Stenosis at 8 Months

100- Paclitaxel-eluting balloon Paclitaxel-eluting stent Balloon angioplasty 80-Cumulative frequency (%) 60-40-20-60 20 100 Diameter stenosis at follow-up angiography (%)

Death/MI during 3 years

Treatment of ISR in Real World Clinical Practice

The efficacy and safety of drug-eluting balloons for the treatment of in-stent restenosis as compared with drug-eluting stents and with conventional balloon angioplasty

Pyung Chun Oh, Soon Yong Suh, Woong Chol Kang, Kyounghoon Lee, Seung Hwan Han, Taehoon Ahn, and Eak Kyun Shin

Clinical Outcomes

Table 3. Clinical outcomes during follow-up

Variable	DEB $(n = 58)$	DEC/n s./	DA (n 65)	p-value		
Variable	DED (II = 50)	DES (n = 54)	BA (n = 65)	DEB vs. DES	DEB vs. BA	DES vs. BA
Follow-up period, mon	17.2 ± 8.7	16.9 ± 13.4	15.4 ± 11.6	0.889	0.352	0.529
MACEs	5 (8.6)	5 (9.3)	9 (13.8)	1.000	0.407	0.571
Cardiac death	1 (1.7)	2 (3.7)	2 (4.1)	0.608	1.000	1.000
Myocardial infarction	0	2 (1.9)	0	0.230	-	0.204
TLR	4 (6.9)	1 (3.7)	7 (10.8)	0.365	0.537	0.070
Stent thrombosis	0	2 (3.7)	1 (1.5)	0.230	1.000	0.590

Values are presented as mean ± SD or number (%).

DEB, drug-eluting balloon; DES, drug-eluting stent; BA, conventional balloon angioplasty; MACE, major adverse cardiac event; TLR, target lesion revascularization.

Role of DEB in DES ISR lesions

Avoid multiple metal layers

Save large side br

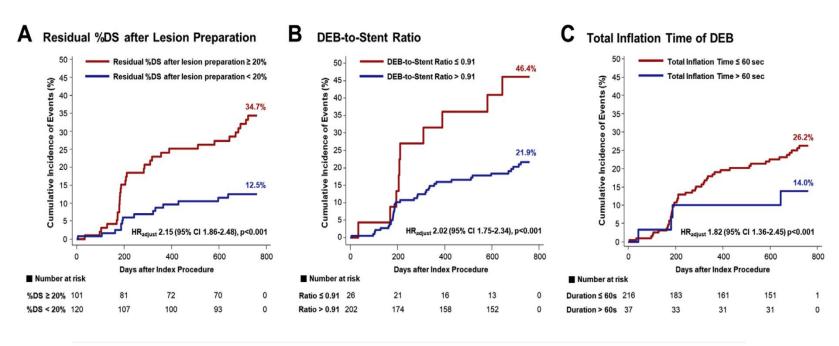
Homogenous drug transfer to the arterial wall

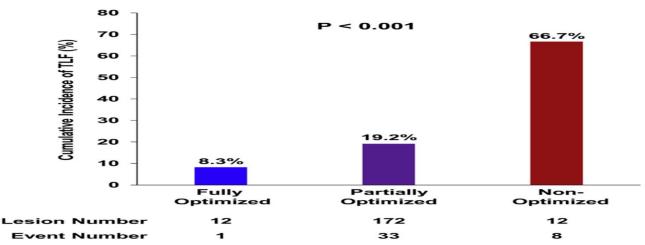
May be better in non-focal type ISR

Avoid prolonged DAPT, suitable high bleeding risk

Role of DES in DES ISR lesions

Suitable for stent fracture


Suitable for restenosis extending outside the stent edge


Suitable for suboptimal results after lesion pre-dilation

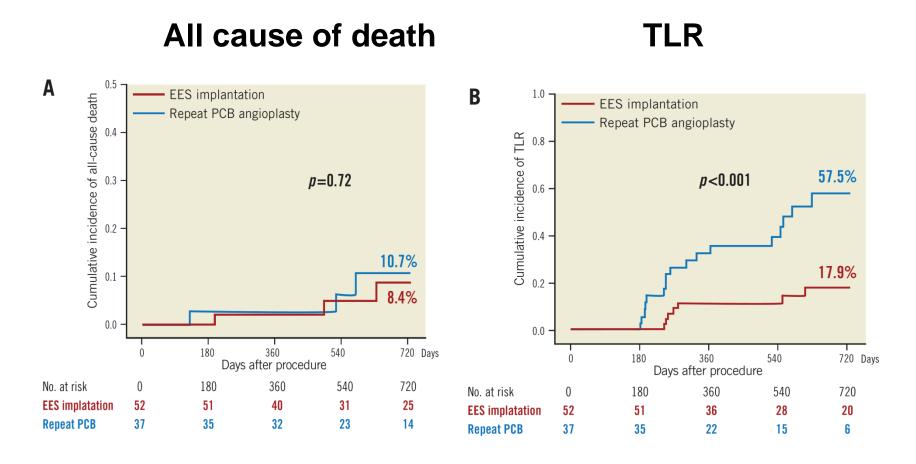
EES are better in recurrent DEB failure ISR lesions.

How to perform DEB?

Factors for DEB failure in DES ISR lesion

Content

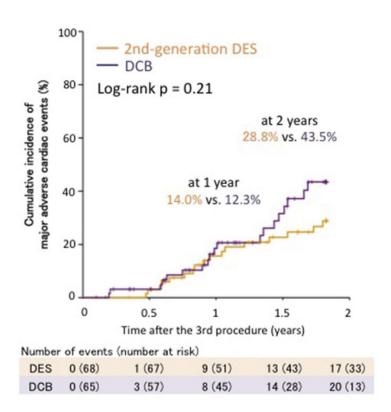
DES ISR, Still remained challenging problem

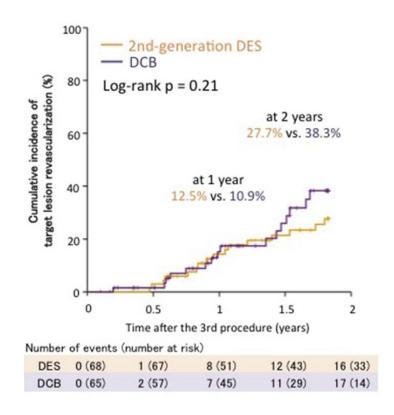

Therapeutic strategy for DES ISR

Current treatment option for DES ISR

Treatment of recurrent DES ISR

Other treatment option for DES ISR


DEB (n=40) vs EES (n=53) in Recurrent DEB failure of ISR Lesions



DEB (n=89/68 pts) vs EES (n=82/65pts) in Recurrent Multimetal-layered ISR

MACE (death, MI, TLR)

TLR

Kubo S, et al. EuroIntervention 2015;10:e1-8

Content

DES ISR, Still remained challenging problem

Therapeutic strategy for DES ISR

Current treatment option for DES ISR

Treatment of recurrent DES ISR

Other treatment option for DES ISR

COURSES

CASES & RESOURCES

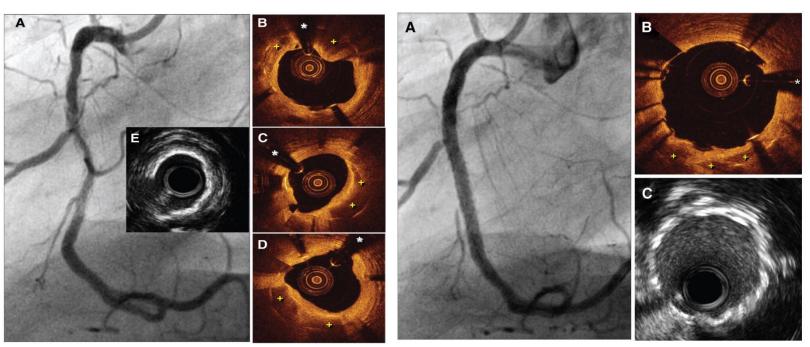
NEWS

PCRonline / News / Industry Press Releases

MagicTouch™ sirolimus coated calloon: one year clinical outcomes

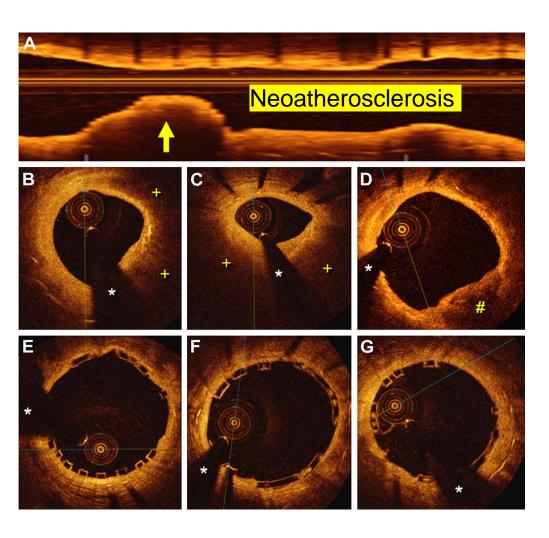
Insights from Nanolutè prospective registry

Titled "One year clinical outcomes of percutaneous treatment with world's first Sirolimus eluting balloons: Results from Nanolutè prospective registry" the article presents the results of analyses of patient-level data from the NANOLUTÈ clinical program, which enrolled a total of 408 patients who received a <u>MagicTouch</u>TM Sirolimus Coated Balloon as participants in study conducted in India.


In NANOLUTÈ study, almost half of the patients presented with diabetes mellitus (44.36%) and acute coronary syndrome (47.55%). Results showed high procedural success rate of 99.51%. SCB-only strategy was employed in a great proportion of the cases (93.14%). There were no procedural deaths reported and the overall 12-month major adverse cardiac event (MACE) was 4.61% (14 cases of TLR, 1 case of myocardial infarction and 1 case of cardiac death).

Sirolimus coated balloon is indicated for lesions in small vessels, in-stent restenosis (ISR) and bifurcation lesions. Subgroup analyses for both small vessel and ISR groups were performed. Results revealed that MACE rate in small vessel group was 4.06% at 12 months with no myocardial infarction reported while in ISR group; MACE was reported as 6.17% at 12 months with no cardiac death reported. The strong performance of the <u>MagicTouch</u> SCB in patients with small vessels and ISR in real-world clinical practice advances the growing body of evidence that warranted the device's efficacy and safety.

Dr. Cortese concluded: "SCB might constitute a new therapeutic option in the setting of complex coronary lesions, also considering the good deliverability and tractability of SCB. Good results were reported in complex patients like with SVD and ISR supports its efficacy".


Rotational Atherectomy

- Failed to show benefit in ISR lesion compared to other tx
- RA may still be required as a bailout strategy in patients with un-dilatable ISR lesions
 - -Severely under-expanded stents
 - -Calcified intra-stent neoatherosclerosis

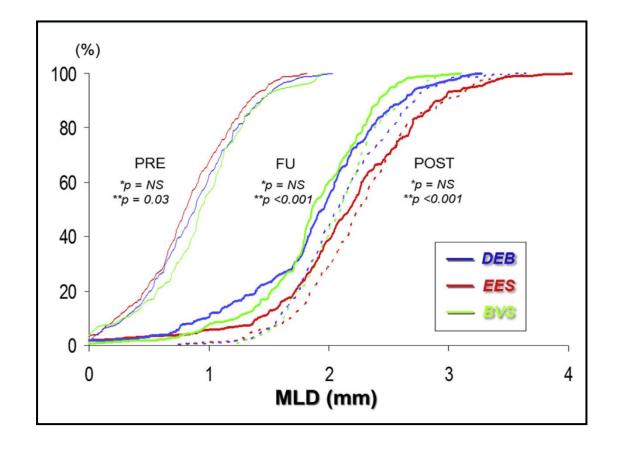
Kobayashi Y, et al. CCI 2001;52:208-11 Vales L, et al. Int J Angiol 2013;22:63-8 Alfonso F, et al. Circ Cardiovasc Interv

BRS for DES-ISR

Alfonso F, et al. JACC 2014;63:2875

 Advantage: preventing early recoil, strong antiproliferative property, device disappear, avoiding the presence of multiple stent layers ("onion-skin" phenomenon)

Potential limitations:

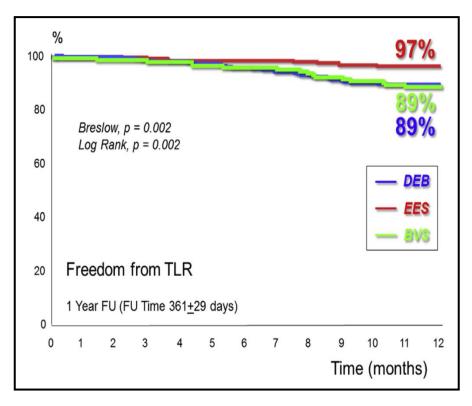

lumen crowding due to strut thickness (particularly in small vessels), device flexibility, questions regarding radial strength and recoil, risk for stent thrombosis

BVS vs DEB, EES in RIBS IV: MLD

BMS and DES ISR

BVS: 141patients

DEB: 249 EES: 249

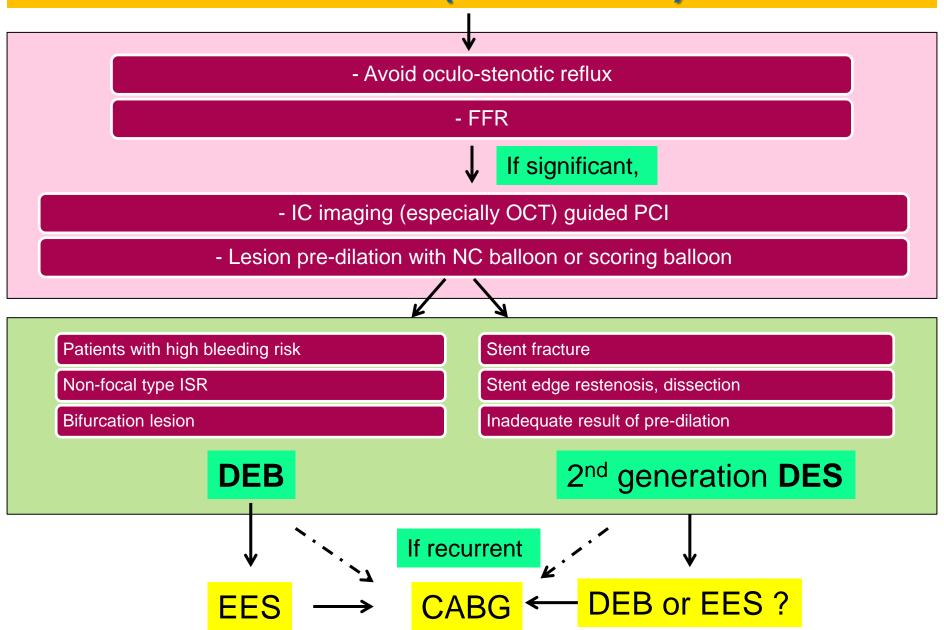


BVS vs DEB, EES in RIBS IV: MACE, TLR

MACE

94% 80 Breslow, p = 0.02Log Rank, p = 0.0360 - DEB 40 Freedom from MACE (Cardiac Death, MI, TLR) 1 Year FU (FU Time 361+29 days) 10 Time (months)

TLR


BMS and DES ISR

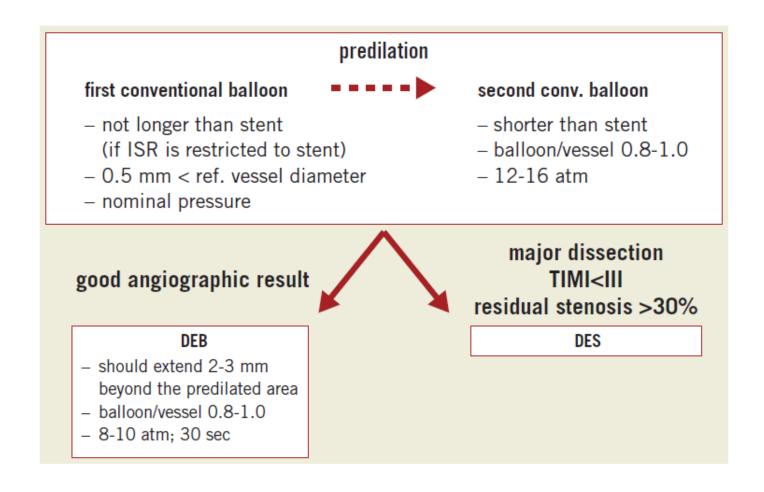
BVS: 141 DEB: 249

EES: 249

Alfonso F, et al. JACC Int 2017;10:1841

DES ISR (%DS >50%)

Thank you for attention!


DES in DES-ISR: Homo vs Hetero DES

- Hetero DES implantation in DES-ISR lesions might overcome drug resistance or specific polymer related problems.
- Overall, results remain inconclusive, and the evidence of favoring a switch strategy is weak. (ISAR-DESIRE 2 and RIBS III trials).

SES vs PES in SES-ISR lesions (ISAR-DESIRE2)

Mehilli J, et al. JACC 2010;55:2710-6

Figure 1. *Treatment recommendations for in- stent restenosis.*