08 Dec, 2018 JCR

Bong-Ki Lee, MD, PhD

Division of Cardiology Department of Internal Medicine Kangwon National University School of Medicine Kangwon National University Hospital Chuncheon, Korea

550

Why & How We treat Acute Coronary Syndrome

- We treat ACS to save lives and reduce myocardial damage
- The mainstay of ACS treatment is reperfusion therapy
- Primary & secondary prevention is also important

→ Improve clinical outcomes

What's the Role of Physiologic Study for ACS Patient

- Provides a natural set of tools to quantify both focal and diffuse disease of a severity that may be associated with improved hard outcomes, independent of symptom relief.
 - FFR \rightarrow evaluate flow limitation \rightarrow decision making of revascularization
 - In ACS, multifocal heterogeneous inflammation, endothelial dysfunction, coronary spasm, and downstream smallvessel disease may associate with subsequent nonculprit risk not accounted for by FFR
 - ➔ Physiological assessment beyond FFR may uncover a host of abnormalities

Torino PA et al. NEJM 2009;360:213-24 Lee BK et al. 2015;131:1054-60 Johnson NP et al. JACC 2016;67:2772-88

Prevalence of occult coronary abnormalities on invasive assessment in patients with angina and angiographically normal non-obstructive coronary arteries

KN 2 강원대학교병원

Lee BK, Fearon WF et al. Circulation. 2015;131:1054–1060

Associated, but Completely Different Physiologic Indexes

Kobayashi et al. Circ J 2014

FFR in ACS

 FFR, when used in ACS patients, should be integrated into the entire clinical picture to aid in clinical decision making

Thresholds for ischemia and long-term outcomes are based on studies on SIHD patients and should not be extrapolated to ACS patients

Hakeem A et al. Curr Opin Cardiol. 2017;32:767-775

FFR has poor correlation with plaque characteristics

- 70% stenosis in mid LAD on angiography
- FFR=0.89
- Large red thrombus in mid LAD (B &C) with MLA 1.8 mm²

Hakeem A et al. EuroIntervention. 2015;11:e1-2

Annualized MI/TVF Rates on the Basis of Optimal FFR Cutoffs for ACS and SIHD

Hakeem A et al. J Am Coll Cardiol. 2016;68:1181-1191

Coronary Pressure-Flow Relationship & CFR vs FFR

Meuwissen M et al. Interv Cardiol 2009;1:237-55

CFR Ischemia Threshold

Coronary flow reserve	n	Ischemic test	BCV	Accuracy (%)	Remarks
Joye et al. (1994)	30	MPS	2.0	94	SVD
Miller et al. (1994)	33	MPS	2.0	89	SVD
Deychack et al. (1995)	17	MPS	1.8	96	SVD
Tron <i>et al.</i> (1995)	62	MPS	2.0	84	SVD
Donohue et al. (1996)	50	MPS	2.0	88	SVD
Heller <i>et al.</i> (1997)	55	MPS	1.7	92	SVD
Schulman et al. (1997)	35	X-ECG	2.0	86	SVD
Danzi <i>et al.</i> (1998)	30	DSE	2.0	87	SVD
Verberne <i>et al.</i> (1999)	37	MPS	1.9	85	SVD
Piek et al. (2000)	225	X-ECG	2.1	76	SVD
Abe et al. (2000)	46	MPS	2.0	92	SVD
Chamuleau et al. (2001)	127	MPS	1.7	76	2- and 3-VD
Duffy et al. (2001)	28	DSE	2.0	88	SVD
El-Shafei <i>et al.</i> (2001)	48	MPS	1.9	77	SVD
Meuwissen et al. (2002)	151	MPS	1.7	75	1- and 2-VD
Voudris et al. (2003)	48	MPS	1.7	75	SVD
Salm <i>et al.</i> (2005)	20	MPS	1.8	83	SVG
Total	1042		1.9	81	

BCV: Best cut-off value (defined as the value with the highest sum of sensitivity and specificity); DSE: Dobutamine stress echocardiography; MPS: Myocardial perfusion scintigraphy; SVD: Single-vessel disease; SVG: Saphenous vein graft; VD: Vessel disease; X-ECG: Exercise electrocardiography.

Meuwissen M et al. Interv Cardiol 2009;1:237-55

Coronary Pressure-Flow Relationship & CFR vs FFR in ACS

Coronary Flow Reserve (CFR)

Coronary flow reserve =

Hyperemic baseline

CFR domain

van de Hoef, et al. Nat Rev Cardiol 2013

Non-invasive CFR Measurment also Available

Figure 1 Blood flow in the left anterior descending coronary artery obtained using a modified, low parasternal long axis view.

Korcarz CE et al. J Am Soc Echocardiogr 2004;17:704-7

Non-invasive CFR Measurment also Available

Figure 2 Typical spectral Doppler flow in the left anterior descending coronary artery.

КАРГ अश्वमध्रम् अश

Korcarz CE et al. J Am Soc Echocardiogr 2004;17:704-7

Impact of MVO on the Microcirculation and FFR After ST-Segment Elevation Myocardial Infarction

Cuculi F et al. JACC 2014;64:1894-904

Prognostic Value of the IMR after Primary PCI for STEMI

Fearon WF et al. Circulation 2013;127:2436-441

Prognostic Value of the IMR+CFR after Primary PCI for STEMI

Park SD et al. Coronary Artery Disease 2016;27:34-39

Prognostic Value of the IMR+CFR after Primary PCI for STEMI

Ahn SG et al. JACC Cardiovasc Interv 2016;9:793-801

IMR Alone is Sufficient for Prognostication after STEMI

No additive role of CFR to predict all-cause death or re-hospitalization

Associations	OR (95% CI)	P Value
Univariable associations		
IMR>40	4.36 (2.10-9.06)	< 0.001
IMR (for a 5-unit change)	1.08 (1.05–1.12)	< 0.001
IMR>median	2.16 (1.01-4.61)	0.047
CFR≤2.0, IMR>40	4.37 (2.13-8.97)	< 0.001
CFR≤median, IMR>median	2.96 (1.24-7.08)	0.015
CFR (for a 0.2-unit change)	0.92 (0.82-1.02)	0.124
CFR≤median	1.74 (0.81–3.72)	0.153
CFR≤2.0	1.17 (0.50–2.72)	0.721
Multivariable associations		
Model A (n=283)		
IMR>40	4.70 (2.10–10.53)	< 0.001
Cigarette smoker	2.49 (1.01-6.14)	0.048
Hypertension	2.84 (1.26-6.42)	0.012
IMR>40, CFR ≤2.0	5.01 (2.22-11.33)	< 0.001
Cigarette smoker	2.69 (1.08-6.69)	0.033
Hypertension	2.84 (1.26-6.42)	0.12
Model B (n=282)		
IMR >40	4.42 (1.93–10.10)	< 0.001
No ST-segment resolution	2.49 (1.01–6.15)	0.049
TIMI frame count after PCI	1.00 (0.97–1.03)	0.823
IMR>40, CFR≤2.0	4.46 (1.96–10.15)	< 0.001
No ST-segment resolution	2.58 (1.04-6.38)	0.041
TIMI frame count after PCI	1.00 (0.97-1.03)	0.866

Carrick D et al. Circulation 2016;134:1833-847

Evolution of Mean Transit Times, CFR, and IMR After STEMI

After STEMI, serial invasive measurements in the culprit artery showed decreasing microvascular resistance and increasing CFR over the subsequent 6 months, reflecting some myocardial recovery after an acute event.

→ Measurement of CFR & IMR may provide insights beyond FFR

Cuculi F et al. JACC 2014;64:1894-904

Study Design of the RESIST-ACS Trial

Lee BK, Koo BK et al. Korean Circ J 2016;46:472-80

강원대학교

CK-MB Levels Before and After Stenting

Fig. 3. Box plots comparing CK-MB levels before and after stenting in the two groups. The median, interquartile range (IQR) and 1.5 IQR for each group are shown. Comparison was performed by Man-Whitney and Wilcoxon tests. CK-MB: creatine kinase-myocardial isoenzyme, PCI: percutaneous coronary intervention.

Lee BK, Koo BK et al. *Korean Circ J* 2016;46:472-80

Distribution of Post-PCI IMR Values

Lee BK, Koo BK et al. Korean Circ J 2016;46:472-80

내막고병원

The Comparison Between Patients with and without Long-term Clinical Adverse Event

	Event (+) group; N = 19	Event (–) group; $N = 64$	P value
Age, y	67.9 ± 9.7	62.4 ± 9.3	0.027
Physiologic parameters after PCI			
Pa, mmHg	86 ± 15	87 ± 12	0.92
Pd, mmHg	78 ± 14	78 ± 13	1.00
Tmn at rest, sec	0.87 (0.56-1.46)	0.65 (0.49-1.10)	0.15
Tmn at hyperemia, sec	0.40 (0.31-0.58)	0.23 (0.13-0.37)	0.001
FFR	0.92 (0.84-0.98)	0.89 (0.86-0.95)	0.72
CFR	1.82 (1.36-3.81)	2.55 (1.90-4.21)	0.041
IMR	27.2 (22.9-46.5)	16.3 (10.7–29.2)	0.001

 Post-PCI IMR value showed a significant relationship with long-term prognosis in patients with NSTE-ACS who were treated with an early invasive strategy, while post-PCI FFR did not.

Murai T et al. Catheter Cardiovasc Interv. 2018;1-12

Can IMR Predict MACE after PCI?

Murai T et al. Catheter Cardiovasc Interv. 2018;1-12

Can IMR Predict MACE after PCI?

Murai T et al. Catheter Cardiovasc Interv. 2018;1-12

I'm Happy to See This!

15.4

Murai T et al. Catheter Cardiovasc Interv. 2018;1-12

Lee BK, Koo BK et al. *Korean Circ J* 2016;46:472-80

Take Home Message

- For patients with acute coronary disease, coronary physiology may potentially refine treatment of the culprit lesion
- Simultaneous measurement of high-fidelity pressure and velocity also opens up new avenues to gain physiological information from the entire coronary circulation
- Measuring IMR and CFR helps to predict clinical outcome after acute coronary syndrome
- Novel systemic therapies for cardiovascular disease, such as methotrexate and PCSK9 inhibitors, are currently being tested in general populations, and coronary physiology may provide a risk stratification tool to refine their cost-effective use

