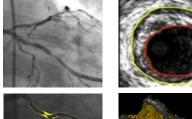
Hemodynamic force analysis improves non-invasive prediction of risk of ACS

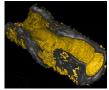
: Results from EMERALD study

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

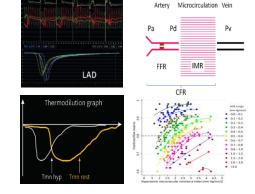


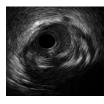
Methods for ACS risk assessment


ACS Risk

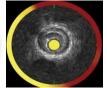
Plaque Character

% Diameter stenosis, MLA, plaque burden...

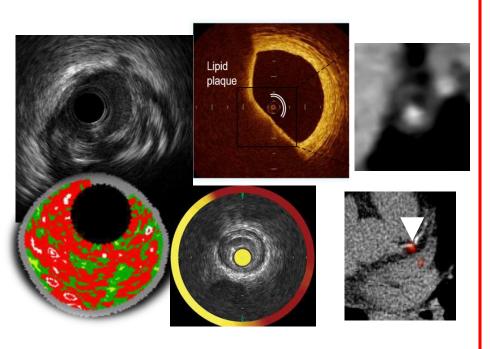



Anatomy

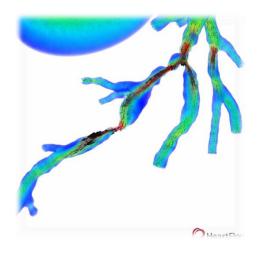
FFR, CFR, IMR, Pd/Pa...


Hemodynamics

Lipid-rich plaque, positive remodeling, TFCA...

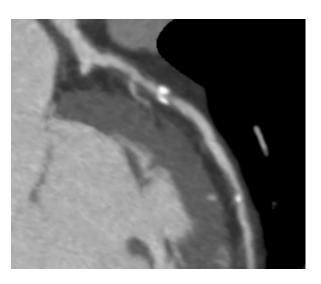

Choi G & Lee JM, et al. JACC Cardiovasc Imaging 2015;8:1156-66 Lee JM, et al. JACC Cardiovasc Imaging 2016 Lee JM, et al. Korean Circ J. 2018 Mar;48:179-190 Kaul S, Narula J, et al. J Am Coll Cardiol. 2014 Dec 16;64:2519-24 Why do we need "MORE" for ACS prediction?

							PPV	NPV	_
TABLE 2 Prognostic Perform	nance of Plaque	Characteristics							
				Event Rat	te % (n/N)				
Trial (Ref. #), Follow-Up	Cohort	Endpoint	Lesion Variable	+ Lesion Variable	 Lesion Variable 	OR/HR	0.04	0.99	AUC (95% CI)
				Intravascular Imagi	ng Studies				
PROSPECT(3), 3.4 yrs	ACS	MACE	TCFA	4.4 (26/595)	1.2 (25/2,114)	3.8 (0.09	0.99	0.71 (0.62-0.79)
(lesion-specific risk)			PB ≥70%	8.7 (25/288)	1.0 (30/2,941)	9.6	0.05	0.01	0.82 (0.76-0.87)
			$MLA \leq 4 \text{ mm}^2$	4.9 (30/616)	1.0 (25/2,522)	5.11 (0.05	0.91	0.75 (0.67-0.82)
			All 3	18.2 (8/44)	1.6 (44/2,665)	13.6	0.10	0.00	0.86 (0.76-0.92)
PROSPECT (3), 3.4 yrs (patient-specific risk)	ACS	MACE	PB ≥70%	19.1 (42/220)	7.0 (31/440)	3.1 (0.18	0.98	0.68 (0.60-0.75)
VIVA (4), 1.8 yrs	ACS + SCAD	MACE	NC-VHTCFA	2.9 (5/175)	1.1 (8/756)	7.53†	0.19	0.93	NA
(lesion-specific risk)*			PB ≥70%	NA	NA	8.13	0.15	0.55	NA
VIVA (4), 1.8 yrs (patient-specific risk)*	ACS + SCAD	MACE	NC-VHTCFA	NA	NA	1.79			NA
ATHEROREMO-IVUS (6), 1 yr	ACS + SCAD	MACE	TCFA	10.8 (23/211)	5.6 (17/312)	1.98	NA	NA	0.62 (0.51-0.72)
(patient-specific risk)			PB ≥70%	16.2 (20/124)	5.5 (21/384)	2.90	INA	INA	0.69 (0.55-0.80)
			$MLA \leq 4 \text{ mm}^2$	9.4 (16/182)	7.1 (23/326)	1.23‡ (NA	NIA	0.55 (0.38-0.72)
			All 3	23.1 (12/52)	6.8 (32/471)	3.70	INA	NA	0.72 (0.61-0.82)
ATHEROREMO-NIRS (2), 1 yr (patient-specific risk)	ACS + SCAD	MACE	LCP (LCBI _{4mm} ≥43)	16.7 (17/102)	4.0 (4/101)	4.20	NA	NA	0.74 (0.56-0.87)
(patient-specific risk)		ACM/ACS		8.8 (9/102)	1.0 (1/101)	9.36 (INA	INA	0.82 (0.52-0.97)
PREDICTION (E) 1	1.00	ACM/ACS/Stroke	DD - 500/	11.8 (12/102)	1.0 (1/101)	11.9 (0.85 (0.57-0.97)
PREDICTION (5), 1 yr (patient-specific risk)	ACS	PCI	PB ≥58% Low ESS	22 25	2 9	17.6 (3.18 (0.85 (0.67-0.94) 0.69 (0.56-0.79)
green and a second			Both	41	8	NA (0.11	0.94	0.80 (0.68-0.88)
				Noninvasive Imag				0.0.	
CTA (7), 2 yrs	SCAD	ACS	Positive remodeling	22.2 (10/45)	0.49 (4/820)	45.6 (0.16	0.95	0.95 (0.87-0.98)
(patient-specific risk)	SCAD	ACS	+ low attenuation	22.2 (10/43)	0.49 (4/820)	45.0			0.93 (0.87-0.98)
			plaque				0.10	0.93	
Invasive Hemodynamic Assessment						0.22	0.00		
FAME-2 (8), 30 days			FFR ≤0.80	12.7 (56/441)	3.0 (5/166)	4.22	0.23	0.93	0.74 (0.59-0.85)
(patient-specific risk)§		D/MI		3.9 (17/441)	1.8 (3/166)	2.13‡ (0.17	0.00	0.63 (0.41-0.81)
							0.17	0.96	
			Kaul	S & Narula J	IACC 201 <i>1</i>		0.00	0.00	
Soul Na	tional Univers	ity Hospital	r\aui	o & Marula J	. 0700 2014		0.09	0.99	
	scular Center	•					0.12	0.99	3


Hemodynamics for Vulnerability?

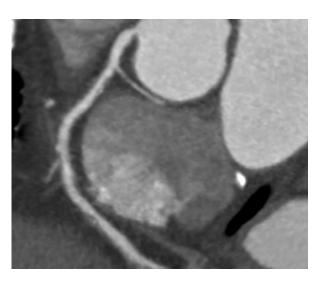
Plaque characteristics

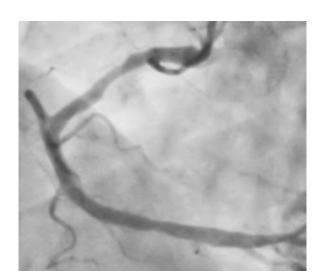
Positive remodeling, posterior attenuation, lipid, cap thickness, TcFA, calcium, napkin ring, low density,......

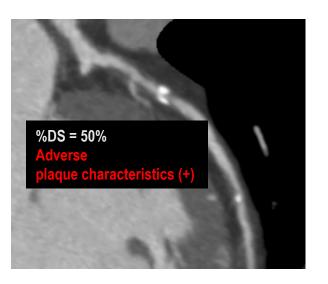


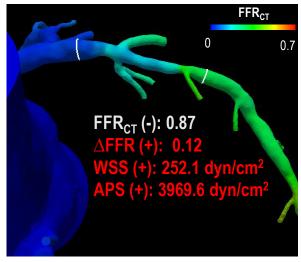
Hemodynamics

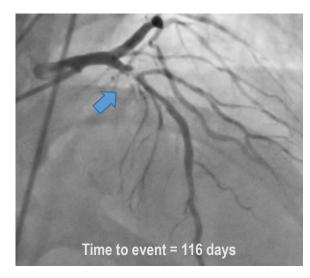


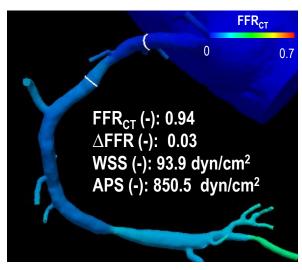

- Pressure
 - Pressure difference
 - Pressure gradient
 - Pressure recovery
 - FFR
- Flow velocity
- Flow rate
- · Shear rate
- · Wall shear stress
- Traction
- Oscillatory shear index
- Particle residence time
- Turbulent kinetic energy,

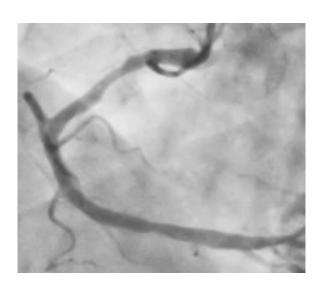

Any better way to identify the risk for ACS/Sudden death?

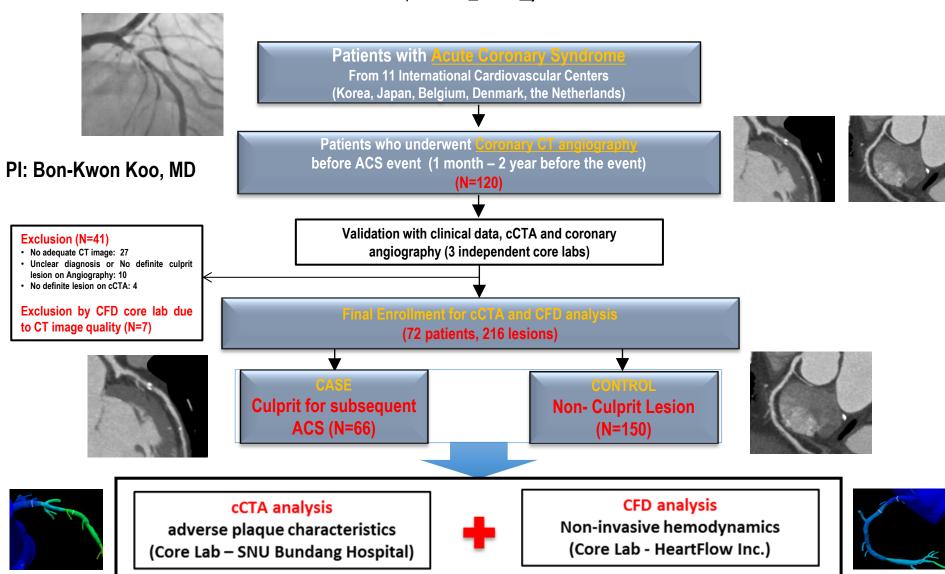


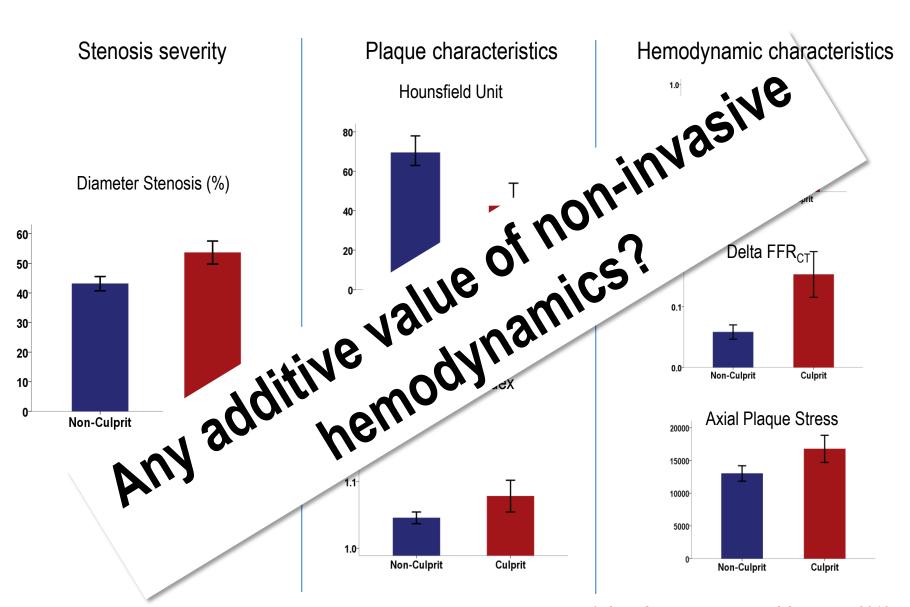





Any better way to identify the risk for ACS/Sudden death?

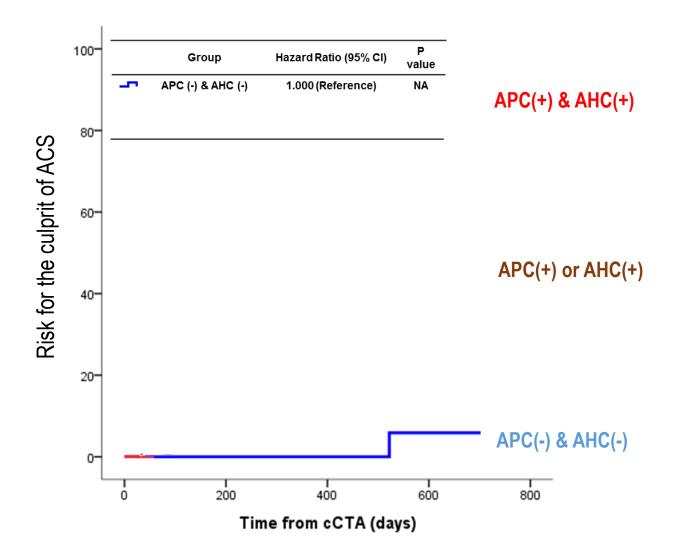





EMERALD study

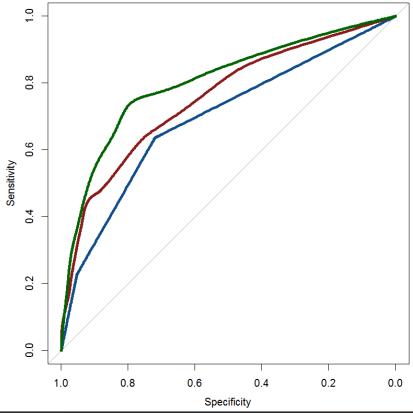
Exploring the <u>ME</u>chanism of the Plaque <u>Rupture in Acute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics</u>

EMERALD study: Culprit vs. Non-culprit



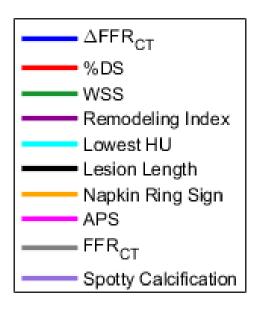
Risk for ACS according to

Adverse plaque characteristics (APC) and Adverse hemodynamic characteristics (AHC)



Prediction of ACS risk

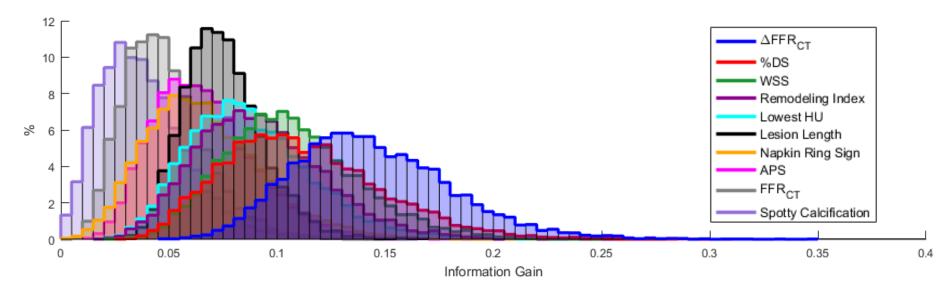
Model 1: % diameter stenosis (%DS)+Lesion length(LL)


Model 2: %DS/LL + adverse plaque characteristics (APC)

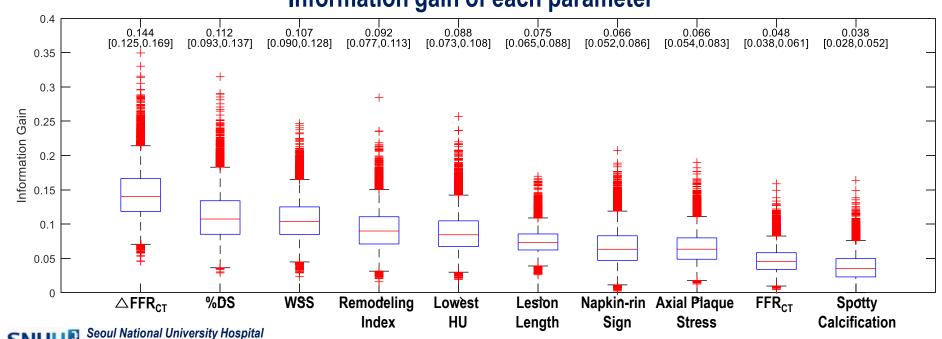
Model 3: %DS/LL + APC + adverse hemodynamic characteristics (AHC)

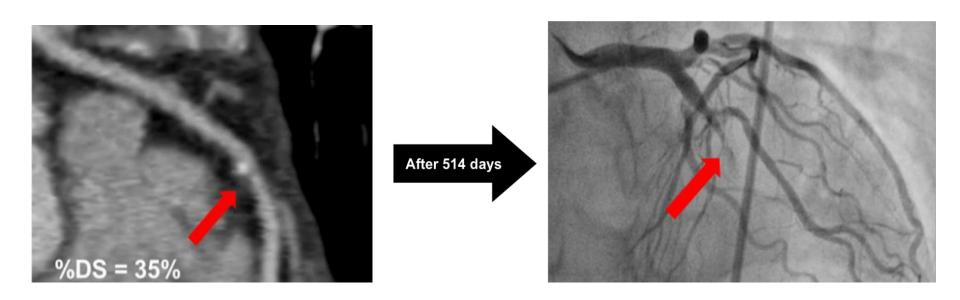
Prediction Model	C-index	Difference with Prev. Model	P value	NRI	P value	IDI	P value
Model 1	0.709						
Model 2	0.747	0.038	0.006	0.355	0.001	0.671	<0.001
Model 3	0.789	0.025	0.014	0.287	0.047	0.368	<0.001

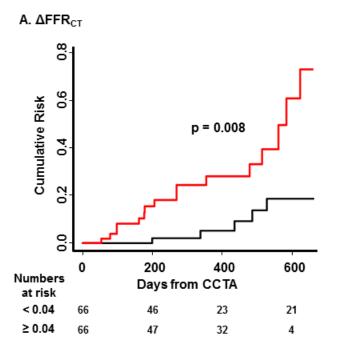
Relative importance of lesion characteristics in ACS risk

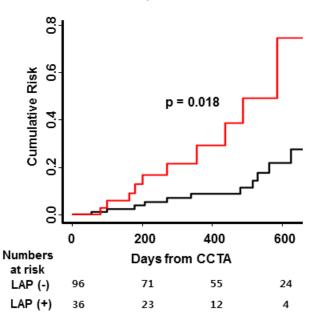

Information gain analysis

- How much "information" a feature gives us about the class = reduction in entropy
- Features that perfectly partition should give maximal information
- Unrelated features should give no information

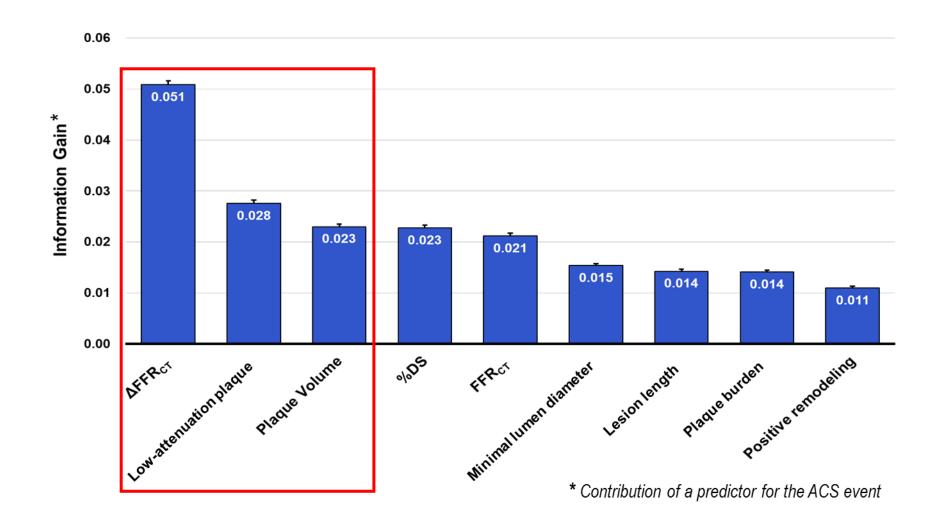

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$


Distribution of information gain from bootstrapping analysis with 10,000 replicates

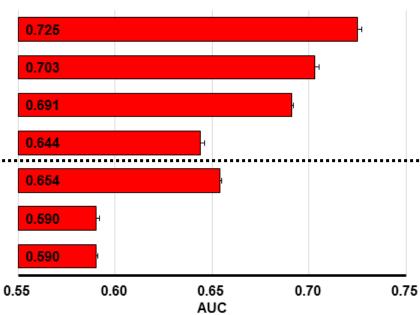

Non-obstructive lesions are not innocent!


Acute fatal cardiovascular event may occur from nonobstructive lesions.

Prognostic impact of lesion characteristics


Lesion Characteristics	HR (95% CI)	95% CI	P value
Anatomical Characteristics			
% Diameter stenosis	1.54	0.78-3.02	0.214
Minimal luminal diameter	0.95	0.43-2.11	0.897
Lesion length	1.02	0.45-2.13	0.966
Plaque volume	1.25	0.50-3.12	0.639
Plaque burden	1.15	0.38-2.00	0.749
Plaque Characteristics			
Low-attenuation plaque	2.60	1.36-4.95	0.004
Positive remodeling	1.15	0.33-4.03	0.831
Hemodynamic Characteristics			
FFR _{CT}	0.54	0.27-1.09	0.101
ΔFFR_{CT}	3.25	1.31-8.04	0.010

B. Low-attenuation Plaque



Relative importance of lesion characteristics in ACS risk

Best metric for ACS prediction in non-obstructive lesions

Model 7 : Plaque Volume + Low-attenuation plaque + Δ FFR_{CT}

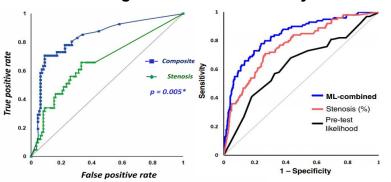
Model 6: Low-attenuation plaque + Δ FFR_{CT}

Model 5: Plaque Volume + ΔFFR_{CT}

Model 4: Plaque Volume + Low-attenuation plaque

Model 3: ∆FFR_{CT}

Model 2: Low-attenuation plaque


Model 1: Plaque Volume

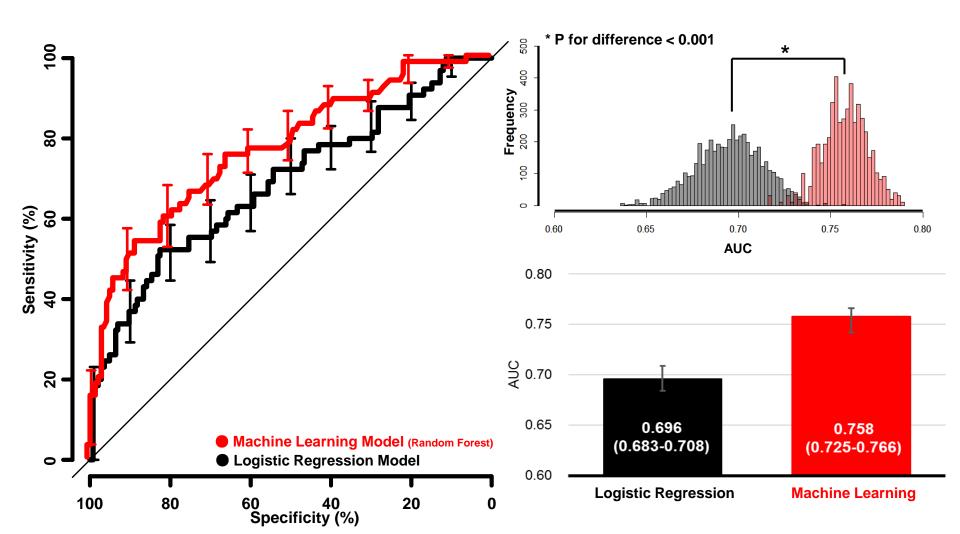
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
AUC	0.590 (0.589-0.591)	0.590 (0.589-0.592)	0.654 (0.652-0.655)	0.644 (0.643-0.646)	0.691 (0.689-0.692)	0.703 (0.701-0.705)	0.725 (0.724-0.727)
P for difference	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7
Model 1	-	0.923	<0.001	<0.001	<0.001	< 0.001	< 0.001
Model 2		-	<0.001	<0.001	<0.001	<0.001	<0.001
Model 3			-	<0.001	< 0.001	< 0.001	< 0.001
Model 4				-	<0.001	< 0.001	< 0.001
Model 5					-	< 0.001	< 0.001
Model 6						-	< 0.001

Machine Learning in Cardiovascular Disease

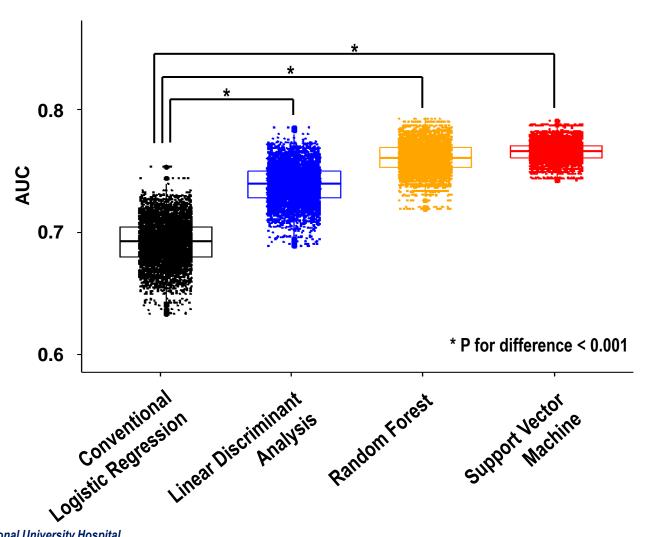
Functional Significance of Coronary Stenosis

Dey D, et al. Circ Cardiovasc Imaging. 2015;8:e003255 Dey D, et al. European Radiology. 2018 28:2655–2664

Discriminating Imaging Diagnosis

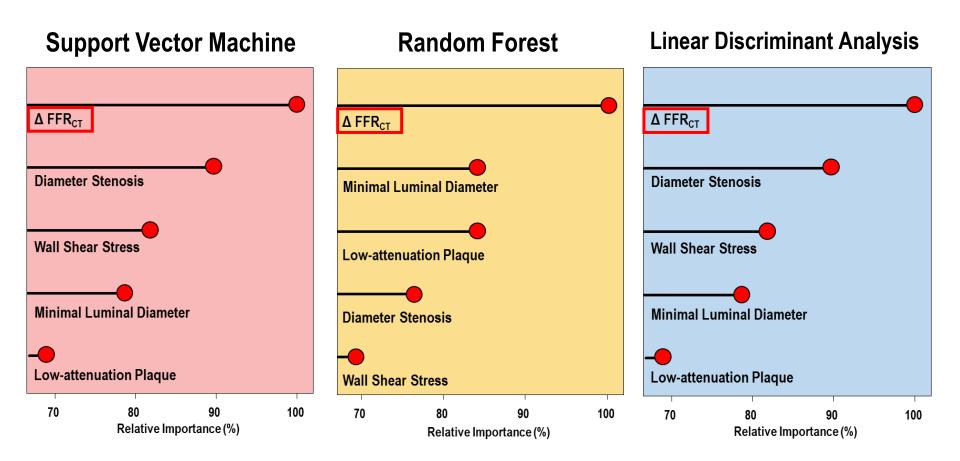


	Sensitivity	Specificity	p value
General model			
ML model	87	82	_
E/A	80	71	< 0.001
e'†	84	74	< 0.001
LS	69	77	0.04


Narula S, et al. J Am Coll Cardiol. 2016 29;68(21):2287-2295

Comparison of Prediction Performance between Conventional Model and Machine Learning model

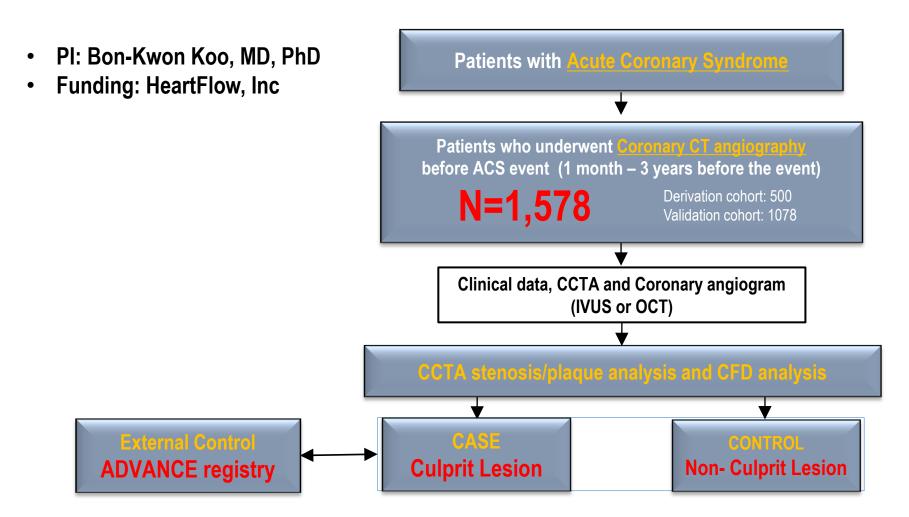
(5-fold Cross Validation with 5,000 Random Permutation)



Sensitivity Analysis for Improvement in ACS risk Prediction by Various Machine Learning Algorithms

Relative Importance of Lesion Characteristics

Lessons from EMERALD study


- Non-invasive hemodynamic assessment can enhance the identification of vulnerable plaques that subsequently caused ACS.
- This novel technology can improve the prediction of ACS risk and may help guide optimal treatment for high risk patients.
- Machine learning can further improve the ACS risk prediction.
- A larger study with an external control group is needed to validate this concept.

EMERALD II study

Exploring the <u>ME</u>chanism of Plaque <u>Rupture in Acute Coronary Syndrome using Coronary CT Angiography and Computationa<u>L</u> Fluid <u>D</u>ynamics II</u>

CURRENT STATUS – Participating Centers

Belgium

Aalst Hospital

Denmark

Aarhus University Hospital Odense University Hospital Svendborg Hospital

Germany

Charité - Universitätsmedizin Berlin

Hungary

Semmelweis University

Italy

University of Milan Monzino Cardiology Center

United Kingdom

University of Edinburgh

South Korea

Chosun University Hospital
Chunnam National University Hospital
Inje University Ilsan Paik Hospital
Jeju University Hospital
Keimyung University Dongsan Medical Center
Samsung Medical Center
Seoul National University Hospital
Seoul National University Bundang Hospital
The Catholic University Hospital

The Catholic University Hospital Yeungnam University Hospital

Japan

Aichi Medical University Ehime University Hospital Fukuoka Sanno Hospital Gifu Heart Center

Iwate Medical University Kobe University Hospital Nagoya Heart Center

National Cerebral and Cardiovascular Center

Saiseikai Kumamoto Hospital

Shin Koga Hospital

St Luke's International Hospital

Tokai University

Tokyo Medical Dental Univeristy

Tokyo Medical University Hachioji Medical Center

Toyohashi Heart Center Tsuchiura Kyodo Hospital Wakayama Medical University

More sites are joining for **EMERALD** //

& You All are Very Welcome to Participate!

