

Mitofusin 2 as a novel therapeutic target to prevent adverse post-myocardial infarction remodelling

Sauri Hernandez-Resendiz CVMD, DUKE-NUS Medical School JCR Conference 2018, Busan, South Korea

National Neuroscience Institute

Singapore National

Eve Centre

PATIENTS. AT THE HEV RT OF ALL WE DO.

Bright Vision Hospital

Mitofusin 2 (Mfn2)

Mfn2 and autophagy in heart

Scientific Rational

In this project, we investigate the role of Mfn2 as a novel therapeutic target for preventing adverse post-MI LV remodeling and heart failure.

- **Hypothesis:** A reduction in myocardial Mitofusin 2 levels following acute myocardial infarction results in an adverse left ventricular remodelling by inhibit autophagy flux.
- Aim 1: To investigate the role of Mfn2-ablation and autophagy in the heart.
- Aim 2: To investigate whether myocardial Mfn2 levels are reduced, and autophagy flux are inhibited during post-AMI adverse.

Materials and Methods

Deletion of Mfn2 in cardiac myocytes display significant gross abnormalities

ACADEMIC MEDICAL CENTR

Deletion of Mfn2 in cardiomyocytes increases left ventricle mass and collagen deposition

Mfn2 deficiency in cardiomyocytes induces a progressive dilated cardiomyopathy

Mfn2 ablation in cardiomyocytes inhibit autophagy flux

Aim 2

To investigate myocardial Mfn2 levels and autophagy flux during chronic post-MI adverse LV remodelling.

1. To investigate whether myocardial levels of Mfn2 decrease following MI.

2. To investigate autophagy activity following MI.

Materials and Methods

CARDIOVASCULAR SCIENCES

SingHealth DUKE

Post-infarction remodelling reduces levels of Mfn2

Autophagic activity increases during late healing stage of MI

Summary

- Ablation of Mfn2 induces a progressive dilated cardiomyopathy and inhibit autophagy flux.
- Post-infarction remodelling decreases levels of Mfn2 protein.
- Autophagy activity increases during the late healing stage of MI.
- Post-MI remodelling inhibits autophagy flux.

Acknowledgements

Derek J. Hausenloy Hector Cabrera-Fuentes Elisa Liehn Whendy Contreras Gustavo Crespo En Ping Yap Shengjje Lu Nicole Tee

National Heart Centre Singapore SingHealth

Thank you

