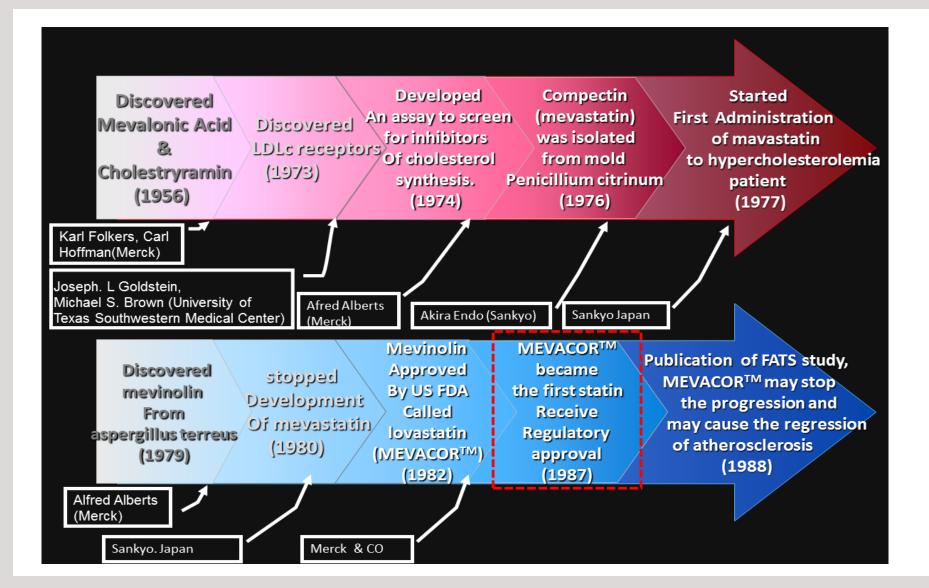

REAL CAD study : What would be the clinical benefit from high dose PIV ?

Soo-Joong Kim M.D., PhD. Department of Cardiology, Internal Medicine, Kyung Hee University Hospital

Atherosclerosis is the most common pathologic condition leading to cardiovascular disease



- A dynamic disease process clinically characterized by narrowing of the arterial lumen due to accumulation of atherogenic lipoproteins and inflammatory cells
- Complex interaction of lipoproteins, inflammatory cells, and the arterial wall

Relationship of atherosclerosis & cardiovascular disease

- Cardiovascular disease (CVD) due to atherosclerosis of the arterial vessel wall and to thrombosis is the foremost cause of premature mortality and of disability-adjusted life years (dalys).
- The management of dyslipidemias as an essential and integral part of CVD prevention.
- Dyslipidemias cover a broad spectrum of lipid abnormalities, some of which are of great importance in CVD prevention.

Birth of Statin

Statin established solid evidence based on landmark trials

Landmark Statin Trials

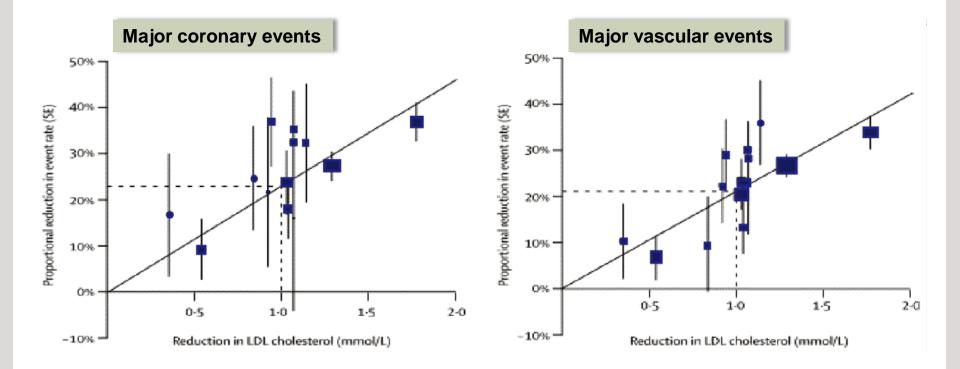
Lots of Evidence

AFCAPS/TexCaps, WOSCOPS, ALLHAT, CARE, LIPID, PROSPER, 4S, HPS, A-to-Z MIRACL, CARDS, PROVE-IT, ALLIANCE, 4D, ASCOT-LLA, IDEAL, TNT, SPARCL, AURORA, CORONA, GISSI-HF, JUPITER, SEAS, SHARP, IMPROVE-IT

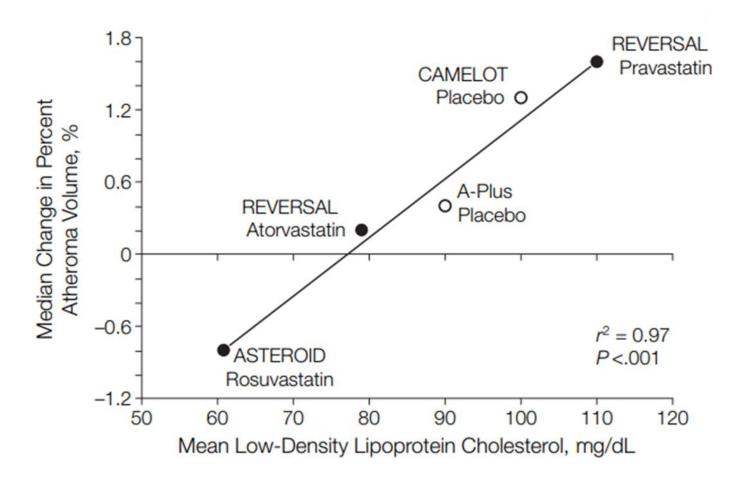
• Statin

• The only proven medicine in 1° & 2° prevention and atheroscleorsis

Effect on vascular events reduction in LDL-C


Proportional effect on major vascular events per mmol/L reduction in LDL-C.

Endpoint	Event		•	RR (CI)
*	Treatment (45054)	control (45002)		
Non-fatal MI	2001 (4.4%)	2769 (6.2%)		0.74 (0.70-0.79)
CHD death	1548 (3.4%)	1960 (4.4%)		0.81 (0.75-0.87)
Any major coronary event	3337 (7.4%)	4420 (9.8%)	•	0.77 (0.74-0.80)
CABG	713 (1.6%)	1006 (2.2%)	.	0.75 (0.69-0.82)
РТСА	510 (1.1%)	658 (1.5%)	- - -	0.79 (0.69-0.90)
Unspecified	1397 (3.1%)	1770 (3.9%)	+	0.76 (0.69-0.84)
Any coronary revascularisation	2620 (5.8%)	3434 (7.6%)	 	0.76 (0.73-0.80)
Haemorrhagic stroke	105 (0.2%)	99 (0.2%)	_	- 1.05 (0.78-1.41)
Presumed ischaemic stroke	1235 (2.8%)	1518 (3.4%)	÷	0.81 (0.74-0.89)
Any stroke	1340 (3.0%)	1617 (3.7%)	◇	0.83 (0.78-0.88)
Any major vascular event	6354 (14.1%)	7994 (17.8%)	\$	0.79 (0.77-0.81)
		0.5		1.5
			Treatment Control better better	
			Effect p<0.001	Lawset 2005
				I


Lancet 2005; 366: 1267 – 1278.

Relationship between proportional reduction in the incidence of events

 Relationship between proportional reduction in the incidence of major coronary events (Left) and major vascular events (Right) and mean absolute LDL-C at 1 year.

Relationship between mean LDL-C levels and mean % change in plaque volume

Lower LDL-C is better.

JAMA 2006; 295: 1556 – 1565.

Recommendation of statin therapy

Recommendations for Lipid-lowering Therapy in Patients with Established CAD

ACC/AHA guideline: High-intensity statin therapy

atorvastatin 40/80 mg, rosuvastatin 20/40 mg, or simvastatin 80 mg

Previous "More versus Less" Statins Trials

	LDL-C Reduction	Events (% per annum)		Unweighted RR (CI)	
	(mmol/L)	Statin/more	Control/less		
More vs less statin					
PROVE-IT	0.65	406 (11.3%)	458 (13.1%)		
TNT	0.62	889 (4.0%)	1,164 (5.4%)	- 	Trend: χ^2_1 =12.4
IDEAL	0.55	938 (5.2%)	1,106 (6.3%)	— — —	(p=0.0004)
SEARCH	0.39	1,347 (3.6%)	1,406 (3.8%)	⋳⋳⋳⋼	
A to Z	0.30	257 (7.2%)	282 (8.1%)		
Subtotal (5 trials)	0.51	3,837/19,829 (4.5%)	4,416/19,783 (5.3%)	$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $	0.85 (0.82-0.89) p<0.0001

Primary Outcome in White and East Asian Populations

HOPE-3 trial- supplementary appendix

Table 1. Primary Outcome in the White and East Asian Populations at a Median Follow-up of 5.6 Years.*							
Population	No. of Patients	Rosuvastatin	Placebo	Relative Risk Reduction	Absolute Risk Reduction		
		no./tota	ıl no. (%)	%	percentage points		
White White	2546	36/1286 (2.8)	58/1260 (4.6)	39.2	1.8		
East Asian	3691	53/1854 (2.9)	69/1837 (3.8)	23.9	0.9		

* The primary outcome was the composite of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Rosuvastatin was administered at a dose of 10 mg once daily. White indicates persons of European descent, and East Asian persons of Chinese descent.

HOPE-3 trial shows that among persons of European descent(whites), the absolute risk reduction in cardiovascular events with rosuvastatin was almost twice as much as that among Chinese persons(East Asians) (1.8% points vs. 0.9% points).

REAL-CAD study

Does High-Intensity Pitavastatin Therapy Further Improve Clinical Outcomes? The REAL-CAD Study in 13,054 Patients

With Stable Coronary Artery Disease

Takeshi Kimura, Teruo Inoue, Isao Taguchi, Hiroshi Iwata, Satoshi limuro, Takafumi Hiro, Yoshihisa Nakagawa, Yukio Ozaki, Yasuo Ohashi, H iroyuki Daida, Hiroaki Shimokawa, Ryozo Nagai,

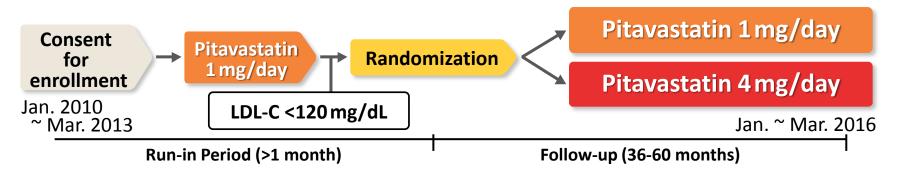
on behalf of the REAL-CAD Study Investigators

Circulation. 2018 May 8;137(19):1997-2009

Backgrounds and Objectives

The high-intensity statins are not widely used in daily clinical practice, particularly in Asi a. No clear evidence regarding "more versus less" statins has been established in Asian population. Furthermore, maximum approved doses of statins are prescribed only very infrequently in Korea.

Therefore, we sought to determine whether **higher-dose statin therapy would be bene ficial in Asian patients in the largest-ever trial** comparing the efficacy of high-dose vers us low-dose statin therapy in patients with established stable CAD.



 Randomized Evaluation of Aggressive or Moderate Lipid Lowering Therapy with Pitavastatin in Coronary Artery Disease

A prospective, multi-center, randomized, open-label, blinded endpoint, physician-initiated trial to determine whether high-dose as compared with low-dose pitavastatin therapy within the approved dose range could reduce CV events in Japanese patients with stable CAD.

Eligibility:

- Men and women, 20-80 years of age
 - Stable CAD:
 - ACS or PCI/CABG >3 months
 - Clinical diagnosis of CAD with coronary stenosis ≥50% diameter stenosis
 - ·LDL-C <120 mg/dL on pitavastatin 1 mg/day during the run-in period

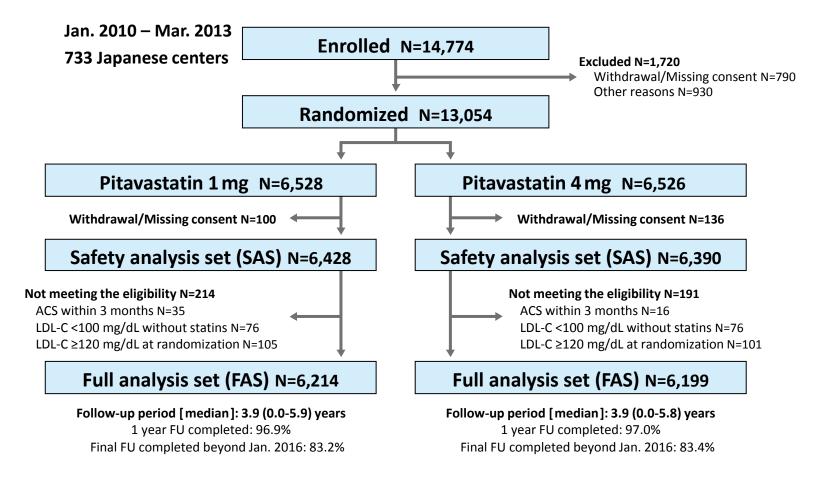
Pitavastatin 1 mg and 4 mg have LDL-C lowering effect comparable to atorvastatin 5 mg and 20 mg, respectively. Circulation. 2018 May 8;137(19):1997-2009

Study Design

PEP : composite of CV death, non-fatal MI, non-fatal ischemic stroke, or unstable angina requiring emergency hospitalization

Sample size calculation

Hypothesis: 16% relative risk reduction with the high-dose pitavastatin Tx

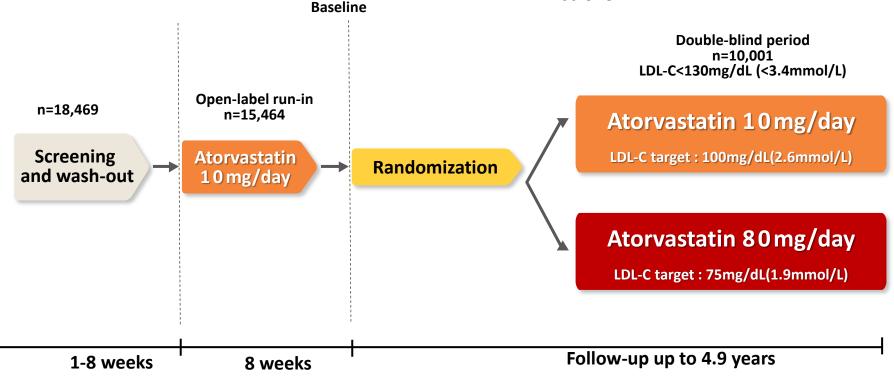

Assumptions: Annual primary endpoint event rate of 2.5%, Drop-out rate of 10%

Sample size: 12,600 patients were to be enrolled with anticipated 1,033 events during the planned 3 years of enrollment and at least 3 years of follow-up.

Power: 80%, Alpha: 0.05

The actual event rate was lower than anticipated. On October 27, 2015, the steering committee decide d not to extend the study further despite the original event-driven trial design, because substantial nu mber of centers were reluctant to extend the study further.

Study Patient Flow

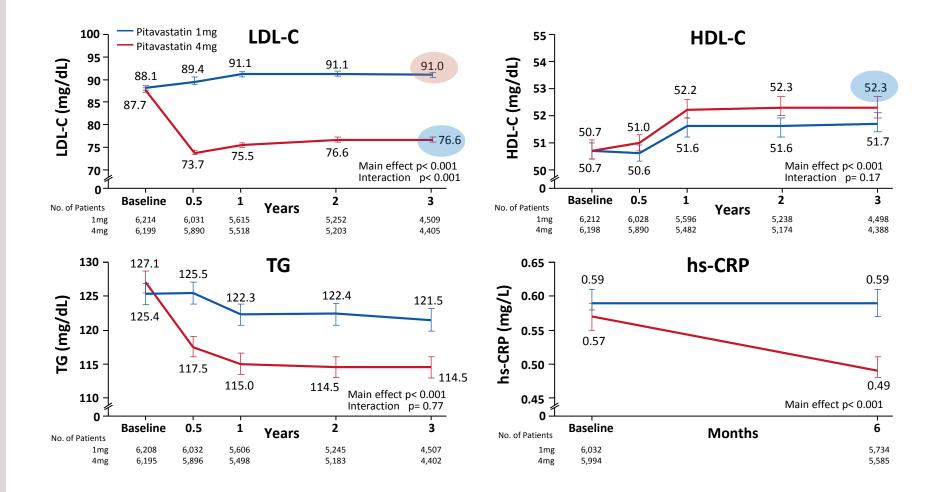

Design : REAL-CAD vs. TNT

Patient population :

- CHD
- LDL-C : 130-250mg/dL(3.4-6.5mmol/L)
- Triglycerides≤600mg/dL(≤6.8mmol/L)

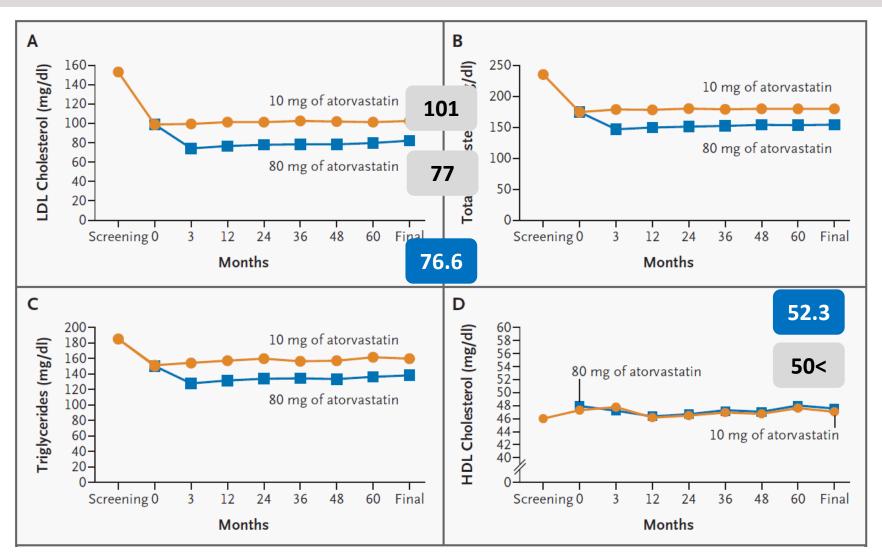
Primary endpoint

- Time to occurrence of a major CV event
 - coronary heart disease death
 - nonfatal myocardial infarction
 - resuscitated cardiac arrest
 - stroke

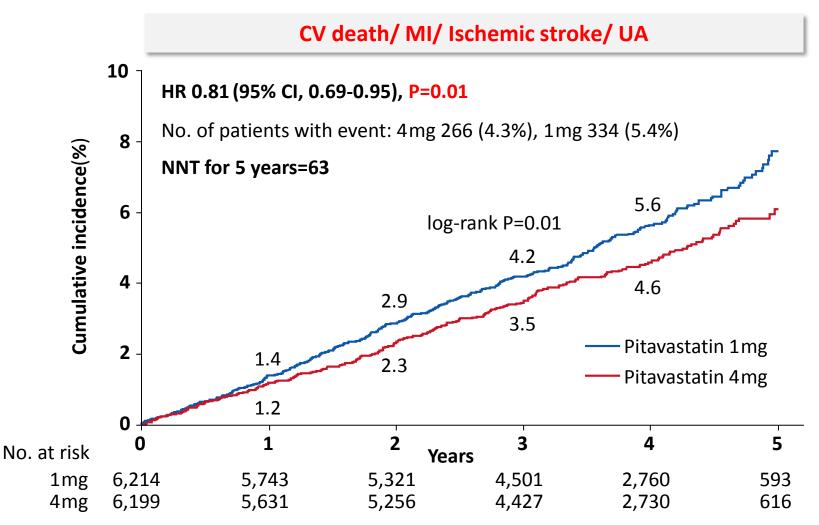

Baseline Characteristics

Variables	Pitavastatin 1 mg (N=6,214)	Pitavastatin 4 mg (N=6,199)
Age — years	68.1±8.3	68.0±8.3
Male sex	83%	83%
BMI — kg/m ²	24.6±3.4	24.6±3.3
Hypertension	75%	76%
Diabetes mellitus	40%	40%
Current smoking	16%	17%
History of ACS	72%	72%
ACS within 1 year before randomization	24%	24%
Coronary revascularization	91%	90%
Revascularization within 1 year before randomization	28%	28%
Ischemic stroke	7%	7%
Peripheral vascular disease	7%	7%
CKD (eGFR <60 mL/min/1.73m²)	36%	35%
Aspirin	93%	92%
DAPT	45%	44%
Statins before enrollment	91%	91%

Baseline Characteristics : REAL-CAD vs. TNT

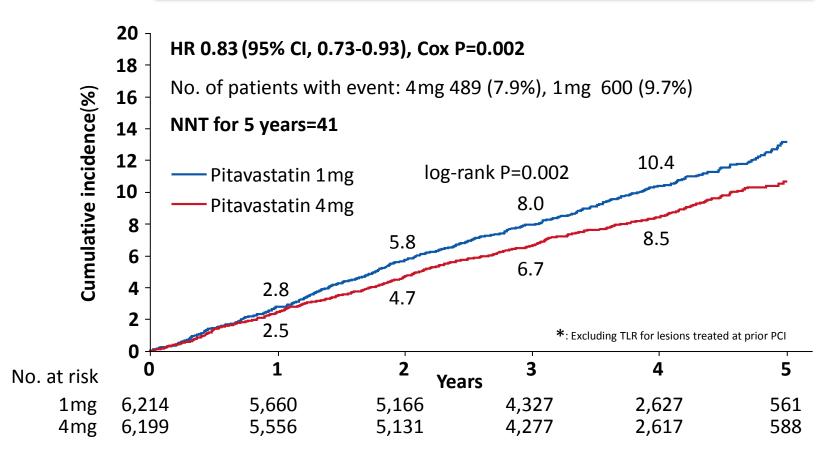

	REAL-CAD		
Characteristic		Atorvastatin 10 mg	Atorvastatin 80 mg
	- 10	(N=5,006)	(N=4,995)
Age — years	10 yrs older	60.9±8.8	61.2±8.8
Male sex – no. (%)		4045 (80.8)	4054 (81.2)
White race – no. (%)	All ASIAN	4711 (94.1)	4669 (94.1)
Systolic blood pressure - mmHg		131 ± 17	131±17
Diastolic blood pressure - mmHg		78±10	78±10
Body mass index		28.6±4.7	28.4±4.5
Cardiovascular history – no. (%)			
Current smoker		672 (13.4)	669 (13.4)
Former smoker	More HT (75%)	3167 (63.3)	3155 (63.2)
Systemic hypertension	. ,	<u>2721 (54.4)</u>	<u>2692 (53.9)</u>
History of diabetes mellitus	More DM (40%)	<u>753 (15.0)</u>	<u>748 (15.0)</u>
Myocardial infarction		2888 (57.7)	2945 (59.0)
Angina		4067 (81.2)	4084 (81.8)
Cerebrovascular accident		263 (5.3)	255 (5.1)
Peripheral-artery disease		570 (11.4)	603 (12.1)
Congestive heart failure		404 (8.1)	377 (7.6)
Arrhythmia		927 (18.5)	907 (18.2)
Coronary revascularization			
Angioplasty		2719 (54.3)	266 (53.8)
Bypass		233 (46.7)	2317 (46.4)

Serial Changes in Lipid Parameters & hs-CRP


Circulation. 2018 May 8;137(19):1997-2009

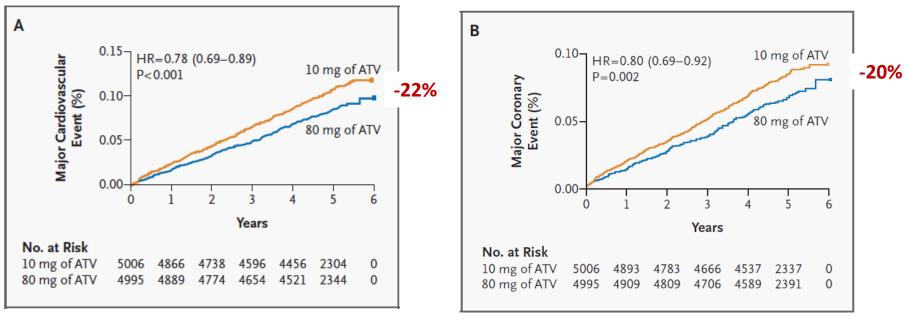
Lipid profile : REAL-CAD vs. TNT

LaRosa JC et al,. N Engl J Med. 2005 Apr 7;352(14):1425-35


Primary Endpoint

Circulation. 2018 May 8;137(19):1997-2009

Secondary Endpoint


Primary Endpoint plus Coronary Revascularization*

Circulation. 2018 May 8;137(19):1997-2009

Primary Endpoint : REAL-CAD vs. TNT

The relative reduction in the risk of the primary composite end point of death <u>from CHD</u>, <u>nonfatal non-procedure-related myocardial infarction</u>, resuscitation after cardiac arrest, <u>and fatal or nonfatal stroke</u> was 22 percent in the group given 80 mg of atorvastatin, as compared with the group given 10 mg of atorvastatin.

A : Cumulative Incidence of a First Major Cardiovascular Event

B : Cumulative Incidence of a First Major Coronary Event

Other Secondary Endpoint : REAL-CAD vs. TNT

The study was not adequately powered to detect changes in the risk of death from any cause.

	No. with fir	st event (%)		
Outcomes	10 mg ATV (n=5,006)	8 0 mg ATV (n=4,995)	HR(95% CI)	P Value
Primary outcome				
Total major cardiovascular events	548 (10.9)	434 (8.7)	0.78 (0.69 – 0.89)	<0.001
Death from CHD	127 (2.5)	101 (2.0)	0.80 (0.61 – 1.03)	0.09
Nonfatal, non-procedure-related MI	308 (6.2)	243 (4.9)	0.78 (0.66 – 0.93)	0.004
Resuscitation after cardiac arrest	26 (0.5)	25 (0.5)	0.96 (0.56 – 1.67)	0.89
Fatal or nonfatal stroke	155 (3.1)	117 (2.3)	0.75 (0.59 – 0.96)	0.02
Secondary outcome				
Major coronary event	418 (8.3)	334 (6.7)	0.80 (0.69 – 0.92)	0.002
Cerebrovascular event	250 (5.0)	196 (3.9)	0.77 (0.64 – 0.93)	0.007
Hospitalization for congestive heart failure	164 (3.3)	122 (2.4)	0.74 (0.59 – 0.94)	0.01
Peripheral-artery disease	282 (5.6)	275 (5.5)	0.97 (0.83 – 1.15)	0.76
Death from any cause	282 (5.6)	284 (5.7)	1.01 (0.85 – 1.19)	0.92
Any cardiovascular event	1677 (33.5)	1405 (28.1)	0.81 (0.75 – 0.87)	<0.001
Any coronary event	1326 (26.5)	1078 (21.6)	0.79 (0.73 – 0.86)	<0.001

LaRosa JC et al,. N Engl J Med. 2005 Apr 7;352(14):1425-35

Other Secondary Endpoints

N	o. of patients v	%vith event (%)	
Outcomes	1 mg (n=6,214)	4 mg (n=6,199)	HR(95% CI)	P Value
Death from any cause	260 (4.2)	207 (3.3)		0.81 (0.68-0.98) 0.03
CV death	112 (1.8)	86 (1.4)	⊢ ♣– <mark>↓</mark>	0.78 (0.59-1.04) 0.09
МІ	72 (1.2)	40 (0.6)	•••••	0.57 (0.38-0.83) 0.004
Ischemic stroke	83 (1.3)	84 (1.4)		1.03 (0.76-1.40) 0.84
Hemorrhagic stroke	30 (0.5)	43 (0.7)		— 1.46 (0.92-2.33) 0.11
Unstable angina requiring emergency hospitalization	90 (1.4)	76 (1.2)		0.86 (0.63-1.17) 0.34
Coronary revascularization (All)	626 (10.1)	529 (8.5)	+++	0.86 (0.76-0.96) 0.008
- Coronary revascularization (non-TLR)	356 (5.7)	277 (4.5)	⊢ ♣→	0.79 (0.68-0.92) 0.003
- Coronary revascularization (TLR)	319 (5.1)	276 (4.5)	r 📥 r	0.88 (0.75-1.03) 0.12
		u 4 mg	Better 1 1 mg Better	1

Subgroup Analyses

Primary Endpoint (CV death/MI/Ischemic stroke/UA)

		No. of	Event	rate (%)			P value for
Subgroup		patients	1 mg	4 mg	HR (95% CI)		interaction
Overall		12,413	5.4	4.3		0.81 (0.69-0.95)	
Age	<65 ≥65	4,009 8,404	5.0 5.6	3.3 4.8		0.67 (0.49-0.91) 0.87 (0.72-1.05)	0.16
Sex	Male Female	10,253 2,160	5.7 3.8	4.6 3.0		0.81 (0.68-0.96) 0.81 (0.51-1.28)	0.99
Diabetes	Yes No	4,978 7,435	6.5 4.6	4.8 4.0		0.75 (0.59-0.95) 0.86 (0.69-1.08)	0.39
LDL-C	<95 mg/dL ≥95 mg/dL	7,865 4,548	5.0 5.9	4.0 4.8		0.81 (0.66-1.00) 0.81 (0.63-1.05)	0.97
hs-CRP	<1mg/L ≥1mg/L	8,510 3,516	4.9 6.7	3.6 6.0		0.75 (0.61-0.92) 0.89 (0.68-1.16)	0.32
HDL-C	≤40 mg/dL >40 mg/dL	2,607 9,803	6.5 5.1	5.0 4.1		0.78 (0.56-1.08) 0.82 (0.68-0.99)	0.78
TG	<150 mg/dL ≥150 mg/dL	8,045 4,358	5.1 5.9	4.3 4.2		0.86 (0.70-1.06) 0.73 (0.56-0.96)	0.34
ВМІ	<25 ≥25	6,693 4,788	5.3 5.7	4.5 4.4		0.87 (0.70-1.07) 0.78 (0.60-1.00)	0.53
			·	4	mg Better 1 1	mg Better	

Safety Outcome

Event	Pitavastatin 1 mg (N=6,428)	Pitavastatin 4 mg (N=6,390)	P value
Adverse events — N (%)			
Rhabdomyolysis	1 (0.0)	2 (0.0)	0.62
Muscle complaints	45 (0.7)	121 (1.9)	<0.001
New onset of diabetes mellitus	279 (4.3)	285 (4.5)	0.76
Laboratory test abnormalities — N (%)			
Elevation of ALT, AST, or both \geq 3ULN	174 (2.7)	187(2.9)	0.46
Elevation of CK ≥5ULN	40 (0.6)	42 (0.7)	0.83

Conclusions and Implications

- REAL-CAD is currently the largest randomized trial to compare high-dose and low-dose statin therapy.
- It was also the first such trial performed in Asia.
- High-dose (4 mg/day) as compared with low-dose (1 mg/day) pitavastatin therapy significantly reduced CV events in Asian patients with stable CAD.
- All-cause death, myocardial infarction, and clinically indicated coronary revascularization were also significantly reduced.
- Rates of serious adverse events were similar in the 2 treatment groups.

