JCR 2019 Busan Lotte Hotel Dec 12, 2019

Lessons learned from COBIS

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

SNUH Seoul National University Hospital Cardiovascular Center

COBIS studies

- Investigator-initiated nation wide multicenter registry studies for <u>CO</u>ronary <u>BI</u>furcation <u>S</u>tenting
- Endorsed by Korean Society of Interventional Cardiology
- Sponsored and managed by Korean Bifurcation Club (COBIS III)

	COBIS I	COBIS II	COBIS III
Patients No.	1691	2897	2648
Enrollment period	2004.1~2006.6	2003.1 ~ 2009.12	2010.1 ~ 2014.12
Inclusion			
Main vessel Diameter, mm	≥ 2.5	≥ 2.5	≥ 2.5
Side branch Diameter, mm	≥ 2.0	≥ 2.3	≥ 2.3
Left main bifurcation	X	0	0
DES generation	1 st	1 st + 2 nd	2 nd only
Median Follow-up Duration	25 months	38 months	53 months

SNUH Seoul National University Hospital Cardiovascular Center

What makes the difference? Device? Concept? Technique?

SNUH Seoul National University Hospital

What makes the difference? Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

COBIS Registry Transradial vs. Transfemoral for Bifurcation PCI

- LM bifurcation lesions from COBIS II (N=853)
- Transradial (N=212, 24.9%) vs. Transfemoral (N=641)
- Propensity score-matched analysis (1:2 ratio, 161 pairs)

	Transradial (N=161)	Transfemoral (N=322)	Adjusted HR (95% CI)	р
MACE	14 (8.7)	37 (11.5)	0.48 (0.22-1.03)	0.06
Cardiac death	4 (2.5)	5 (1.6)	0.33 (0.02-4.97)	0.42
Cardiac death or MI	7 (4.3)	8 (2.5)	1.42 (0.35-5.69)	0.62
TLR	7 (4.3)	32 (9.9)	0.30 (0.11-0.81)	0.02
TIMI major or minor bleeding	4 (2.5)	27 (8.4)		0.01

Chung SM, et al., J Invasive Cardiol 2015

Korean Bifurcation Pooled Cohort 1st vs. 2nd generation DES

Lee JM, et al, JACC Interv 2015

SNUH Seoul National University Hospital Cardiovascular Center

COBIS III registry Clinical outcomes among 2nd generation DES

COBIS III registry Clinical outcome among 2nd generation DES

SNUH Seoul National University Hospital

Jang WJ, et al. Under review

What is the best 2-stent technique?

TAP technique? Culotte technique? DK crush technique?

SNUH Seoul National University Hospital

COBIS II registry What is the best 2-stent technique?

• N=673, treated with 2-stent technique (exclusion: kissing or V-stenting)

10

COBIS II registry What is the best 2-stent technique?

• N=673, treated with 2-stent technique (exclusion: kissing or V-stenting)

Park TK, et al., Eurointervention 2017

SNUH® Seoul National University Hospital Cardiovascular Center

COBIS III registry What is the best 2-stent technique?

SNUH Seoul National University Hospital

Kang JH, et al., KBC workshop 2019

COBIS III registry

What is the best 2-stent technique?

Kang JH. KBC workshop 2019

Insight from COBIS II registry What is the best 2-stent technique?

	Subgroup	Patients	TLR (%)	Favor	Favor	Hazard ratio p	value	p for	
		5	SB first MV first	SB first	MV first	(95% Cl)	Ir	nteraction	
	MV RD	247 42/4		_		0.00 (0.00 4.70)	0.50	0.52	
	23.25 mm	21/ 12/1	20(10.0) $12/97(12.4)$			0.80 (0.36-1.78)	0.59		
	SB RD	450 40/50	05 (15.2) 19/155 (12.4)			1.09 (0.05-1.00)	0.77	0.54	
	>2.5 mm	276 20/1	51 (13.2) 19/125 (15.2)			0.92 (0.49-1.72)	0.79	0.54	
	<2.5 mm	397 32/2	72 (11.8) 12/125 (9.6)	· •		1.23 (0.63-2.38)	0.55		
	SB RD > MV R)			_	(/		0.78	
Subgroup	Dationto	т	ID (%)	Favor	Favo	r Hazard	ratio	n value	n for
Subgroup	Fatients	CD first	LN (70)	SD first		-+ (05%		p value	Interaction
		SB first	IVIV TIRST	SDIIISU		st (95%			Interaction
MV DS									0.04
≥70%	257	22/156 (14.1)	8/101 (7.9)	•		1.94 (0.8	6-4.36)	0.11	
<70%	416	30/267 (11.2)	23/149 (15.4)	⊢	-	0.71 (0.4	1-1.22)	0.22	
SB DS > MV DS			, , ,						0.008
Yes	252	17/189 (9.0)	12/63 (19.0)	⊢∎	-	0.44 (0.2	1-0.92)	0.03	
No	420	35/234 (15.0)	19/186 (10.2)		┝┼╌╋╋──┙	1.54 (0.8	8-2.68)	0.13	
MV Lesion Leng	ţth								0.01
≥18 mm	329	36/215 (16.7)	11/114 (9.7)		┝┼──╋───┥	1.79 <mark>(</mark> 0.9	1-3.53)	0.09	
<18 mm	344	16/208 (7.7)	20/136 (14.7)	⊢∎	4	0.53 (0.2	7-1.01)	0.05	
"N <i>AC</i>		oro locion	EIDCT" etrote	av for co	coc roa	uiring evetor	natia	2 stanti	na
	JKE Sev	ere lesion	FIRST Slidle	gy ior ca	ses requ	Jinny syster	nauc	z stenu	ng.
	≥65°	293 27/10	57 (16.2) 14/126 (11.1)		- 8	1.53 (0.80-2.92)	0.20		
	<65°	380 25/25	56 (9.8) 17/124 (13.7)	┍──╋┼	-	0.72 (0.39-1.33)	0.29		
			0.1	1 1		ר 10			

Park TK, et al., Eurointervention 2017

What makes the difference? Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon....
- Better concept: Imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

"KISS" for 1-stent technique: Good or Bad?

	Number Design	Primary endpoint	Outcomes	Results	Memo
Niemela M (NORDIC III) Circulation 2011	N=477 RCT	6-mo MACE	FKB 2.9%, non-FKB 2.9% P=NS	Neutral	
Gwon HC (COBIS I) Heart 2012	N=1,065 Registry	2-year MACE	FKB 9.5%, non-FKB 4.5% p=0.02	Bad	Higher MV TLR in FKB group
Yamawaki M Circ J 2014	N=253 Registry	3-year MACE	FKB 14.6% vs. non-FKB 6.9% p=0.07	Bad	Higher MV restenosis in FKB-group
Kim TH Int J Cardiol 2014	N=251 Registry	3-year MACE	FKB HR=0.40 (95% CI 0.19–0.84), p=0.015	Good	ACS patients
Biondi-Zoccai G Heart Vessels 2014	N=2,813 Registry	2-year MACE	HR=1.01 (0.80–1.23) p=0.91	Neutral	
Gao Z Chin Med J 2015	N=790 Registry	4-year MACE	FKB: 7.8%, non-FKB 10.0% p=0.33	Neutral	Left main bifurcation
Kim YH (CROSS) JACC CVI 2015	N=306 RCT	1-year MACE	FKB 14.0%, non-FKB 11.6% p=0.57	Bad	Higher MV restenosis in FKB group
Yu CW (COBIS II) JACC CVI 2015	N=1,901 Registry	3-year MACE	HR=0.50 (95% CI: 0.30- 0.85),p = 0.01	Good	Lower MV TLR in FKB group

COBIS II Registry "KISS" for 1-stent techniques

- Treated with 1-stent technique: N=1,901
- Final kissing ballooning (FKB): N=620 → PSM matched analysis: N=545 pairs

		wan ancity Matcha	d Donulatio	-	ſ		
	P	ropensity-matched		n			
	FKB (n = 545)	Non-FKB (n = 545)	p Value	Standardized Difference		(95% CI)	р
After MV stenting							/
Main vessel					MACE	0.50 (0.30-0.85)	0.01
Proximal MLD	$\textbf{3.07} \pm \textbf{0.55}$	$\textbf{3.02} \pm \textbf{0.58}$	0.85	9.2			
Middle MLD	$\textbf{2.76} \pm \textbf{0.54}$	$\textbf{2.71} \pm \textbf{0.56}$	0.72	9.6	Cardiac death	0.50 (0.11-2.29)	0.37
Distal MLD	$\textbf{2.76} \pm \textbf{0.49}$	$\textbf{2.72} \pm \textbf{0.54}$	0.85	8.6		0.40.00.400.4	0.40
Side branch					MI	0.18 (0.01-20.4)	0.48
Ostial MLD	$\textbf{1.26} \pm \textbf{0.73}$	$\textbf{1.25} \pm \textbf{0.69}$	0.71	1.3			
Distal MLD	2.02 + 0.69	1.96 ± 0.68	0.67	7.8	Stent thrombosis,	0 77 (0 17 2 (5)	0.73
Final	FKF	8 reduces	main v	vessel TI F	R not side branch T	TR (°)	0.70
Main vessel		(^	4				
Proximal MI		"Ge	ntle l	KISS for	' MB and SB'')1)	0.02
Middle MLD	$\textbf{2.86} \pm \textbf{0.50}$	$\textbf{2.72} \pm \textbf{0.56}$	0.001				
Distal MLD	$\textbf{2.83} \pm \textbf{0.48}$	2.73 ± 0.55	0.04		Main vessel	0.51 (0.28-0.93)	0.03
Side branch							0.04
Ostial MLD	1.85 ± 0.62	1.36 ± 0.69	< 0.001		Side branch	0.57 (0.24-1.37)	0.21
Distal MLD	2.15 ± 0.59	$\textbf{1.99} \pm \textbf{0.68}$	0.04				
			-		Yu CW	/ and Yang JH, et al. JACC Int	erv 2015

JH 🛛 Seoul National University Hospital Cardiovascular Center

COBIS II Registry Clinical impact of NC balloon

- Use of non-compliant balloon: N=752, 26.0%
- Propensity score-matched analysis: N=710 pairs

	CB	NCB	р	12 - Log rank p=0.02 11.
Dissection >type B	1.1%	0.1%	0.046	10- © 0
Angiographic success				
Main vessel	99.0%	98.7%	0.80	W 4-
Side branch	75.4%	79.7%	0.03	2 Compliant
In-hospital MI	0.8%	0%	0.04	0 12 24 36
				Months

Park TK, et al., EuroIntervention 2016

What makes the difference? Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

COBIS Registry IVUS guidance improves outcomes

SNUH Seoul National University Hospital Cardiovascular Center

Kim JS, Am Heart J 2011

COBIS II Registry

True vs. Non-true bifurcation lesions: Clinical relevance of SB

Subgroup	Patients	MAC	E (%)				Adjusted HR	P value	P for
		True	NonTrue				(95% CI)		Interaction
DM									
Yes	840	69 (15.8)	35 (8.7)		-		1.95 (1.24-3.07)	0.004	0.10
No	2057	112 (10.5)	80 (8.1)		•		1.18 (0.86-1.61)	0.31	0.10
Presentation									
ACS	1798	117 (12.2)	71 (8.5)		-		1.35 (0.98-1.86)	0.06	0.60
Non-ACS	1099	64 (11.8)	44 (7.9)				1.56 (1.01-2.42)	0.05	0.09
Left main									
Yes	853	66 (18.4)	48 (9.7)	H	-		1.22 (0.78-1.90)	0.38	0.42
No	2044	115 (10.1)	67 (7.4)				1.42 (1.04-1.95)	0.03	0.45
Two stent									
Yes	770	102 (17.8)	23 (11.7)				1.54 (0.97-2.43)	0.07	0.40
No	2127	79 (8.5)	92 (7.7)		-		1.20 (0.87-1.65)	0.28	0.49
FKB									
Yes	1349	109 (12.8)	39 (7.9)				1.56 (1.06-2.30)	0.03	0.74
No	1548	72 (11.1)	76 (8.5)		-		1.23 (0.87-1.76)	0.25	0.74
Туре					1	_			
	on	true	bifur	cati	on	wif	h large	SB	- 152
2 nd				Vall	•				1.55
SB reference diamete	er								
>2.5 mm	1154	72 (14.0)	43 (6.7)		-		2.16 (1.48-3.15)	< 0.001	0.02
≤2.5 mm	1741	109 (11.0)	72 (9.6)		-		1.20 (0.89-1.62)	0.23	0.02
			0.:	1	1 T arra	10	_		
			Iri	ue petter	Iru	e wors	2		

Park TK, et al., Circ J 2015

SNUH Seoul National University Hospital

How large is large enough?

% ischemia: 15%

% ischemia: 11%

% ischemia: 10%

% ischemia: 12%

Jeon WK, Koo BK, et al. Eurointervention, In press

Decision Tree for % FMM ≥ 10%

Are you (un)happy with this?

OCT: 18 mo after Cypher

Koo BK, LaDisa J, 2009

COBIS III Registry Clinical relevance of SB opening

Non-True Bifurcation

True Bifurcation

SNUH Seoul National University Hospital

Nam CW, et al. Preliminary data from COBIS 3 registry

What makes the difference? Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

COBIS II Registry Clinical impact of SB occlusion

- Main vessel first stenting strategy: N=2,227
- SB occlusion after MV stenting (TIMI flow <3): N=187, 8.4%

Hahn JY, et al. JACC 2013

COBIS II Registry

How to avoid SB compromise after MV stenting?

- How to protect SB?
 - Jailed wire technique
 - SB predilation
 - Optimal stent sizing,

Variables	OR [95% CI]	p Value
SB DS ≥50%	2.3 [1.59-3.43]	<0.001
SB lesion length (by 1 mm)	1.0[1.003-1.06]	<0.001
Proximal MV DS ≥50%	2.3 [1.57-3.50]	0.03
Acute coronary syndrome	1.5 [1.06-2.19]	0.02
Left main lesions	0.3 [0.16-0.72]	0.005

Predictors of SB occlusion from COBIS II

Hahn JY, et al. JACC 2013

COBIS II Registry Predictor of SB recovery after occlusion

• SB flow recovery: 129 out of 187 occluded patients (69%).

	SB recovery (n=129)	No SB recovery (n=58)	p Value
Bifurcation location		. ,	0.65
Left main bifurcation	9 (7.0)	5 (8.6)	
LAD/diagonal	84 (65.1)	40 (69.0)	
LCX/OM	25 (19.4)	7 (12.1)	
RCA bifurcation	11 (8.5)	6 (10.3)	
True bifurcation	94 (72.9)	45 (77.6)	0.49
Jailed wire in the SB	92 (71.3)	31 (53.4)	0.02
SB predilation before MV stenting	45 (34.9)	16 (27.6)	0.33
Guidance of intravascular ultrasound	39 (30.2)	13 (22.4)	0.27
MV stent diameter (mm)	3.0 (3.0-3.5)	3.0 (2.9-3.5)	0.62
MV stent length (mm)	24.0 (20.0-30.0)	24.0 (20.0-32.0)	0.91
MV stent maximal pressure (atm)	12.0 (10.0-15.5)	12.0 (10.0-14.0)	0.57
MV stent to artery ratio	1.2 (1.1-1.3)	1.2 (1.1-1.4)	0.25

Hahn JY, et al. JACC 2013

Korean Bifurcation Pooled Cohorts Predictors of TVF in 2-stent strategy

Treated with 2-stent strategy: N=951

	Adjusted HR*	95% CI	p Value
Treated bifurcation in LM	2.09	1.43 – 3.03	<0.001
High SYNTAX score >32	2.00	1.28 – 3.14	0.002
Diabetes mellitus	1.41	1.00 – 1.99	0.05
Second-generation DES	0.26	0.12 – 0.57	0.001
Non-compliant balloon	0.53	0.36 – 0.79	0.002
Final kissing ballooning	0.44	0.29 – 0.68	<0.001

*Adjusted for age (continuous), acute coronary syndrome as presentation, preprocedural hemoglobin level, pre-procedural creatinine level, bifurcation angle (continuous), multi-vessel coronary disease, transradial approach, intravascular ultrasound, provisional approach, stenting techniques, total stent length in side branch (continuous).

Conclusion

- COBIS registry started with bifurcation PCI patients since 2004 is still ongoing with dedicated QCA core laboratory/CRO, independent statistical analysis team and event adjudication committee.
- Results of COBIS studies expanded our knowledge on bifurcation treatment and improved the patients' clinical outcomes.
- Ongoing COBIS III study will provide more insights on coronary bifurcation lesions and their treatment.

