

Wire Free FFR A review of the Evidence

Chandan Deepak BHAVNANI Sarawak Heart Centre Malaysia

Questions for Wire-Free FFR

- Is it as accurate as conventional FFR?
- Is it technically challenging to perform?
- Will it lengthen procedure time?
- Is it cost effective?
- Will it change the way we manage patients?

Background

- FFR has become the gold standard (Level 1A) for assessing hemodynamic significance of intermediate stenosis¹
- FFR reliably identifies ischaemia producing lesions and improves clinical outcomes²
- However, FFR assessment costly pressure sensor guidewires into the coronary artery, usually along with the administration of a vasodilator to induce hyperaemia.

1 2011 AHA guidelines for PCI, Task Force on Myocardial revascularization ESC

 CFD, when applied to CT in order to generate CT-FFR, has been shown to improve prediction of FFR⁴

• The Diagnostic accuracy of FFR-CT has been suboptimal so far⁵

4 Koo BK et al 2011,

5 Min JK et al 2012

• A need for a fast, simplified assessment using QA and blood flow simulation (ie. Wire-Free FFR).

• Wire-free FFR requires 2 Angiographic projections, ideally >25degrees apart.

- Using Google Scholar, we were able to find 18 trials on wire-free FFR between 2013 and 2019.
- Systems used for wire-free FFR were:
 - Medis (QFR, Quantitative Flow Ratio)
 - Ansys Cfx (vFFR, Virtual FFR)
 - Pie Medical (Virtual Functional Assessment Index, VFAI)
 - CathWorks (FFR Angio)
 - RainMed (CAFFR)

Vessels Interrogated

LAD		LCX		R	(
VFAI	64.7%	VFAI	13.7%	V	'F
VFFR	N/A	VFFR	N/A	V	'F
QFR	51-64%	QFR	11-17%,	С)
CAFFR	59.5%	CAFFR	11.0%	С	ŀ
FFR ANGIO	54.6%	FFR ANGIO	19.1%	F	F
	-				
LAD 50-65%		LCX 11-19%			

RCA	
VFAI	21.6%
VFFR	N/A
QFR	16-26.2%
CAFFR	26.5%
FFR ANGIO	24.1%

Sample size: 19 – 361 vessels

Exclusion Criteria

	VFAI	VFFR	QFR	CAFFR	FFR Angio
AMI	-	60 days	72 HRS	6 DAYS	1 YR (FAST FFR)
POOR EF	-	-	FAVOR, FAVOR II, WIFI	<50%	<45%
Bifurcation	NO	-	-	-	-
IRA	NO	-	-	-	-
RECENT PCI	-	-	-	-	12 MONTHS
CABG	-	NO	-	-	NO

vFFR (ANSYS CFx)

Trial	Author	Year	Vessels (N)	Sensitivity	Specificity	Accuracy
VIRTU 1	Morris Et Al	2012-2013	17	97%	86%	97%
VIRTU Fast	Morris Et Al	2017	73	100%	100%	100%

VIRTU 1:

- Landmark Trial. First of its kind in wirefree FFR
- Long computation time. 24 hours offline analysis.

VIRTU Fast

- Rapid Computation Time
- Varied results according to vascular anatomy and microvascular resistance
- Parameters for Coronary Microvascular Resistance inferred from Invasive measurement.

VFAI (Pie Medical)

Trial	Author	Year	Vessel (N)	Sensitivity	Specificity	Accuracy
-	Papafaklis et Al	2013	139	90%	86%	88%

- Did not include distal resistance in the assessment
- Infarct related Artery not included.
- Did not include Side Branches.
- Negative Predictive Value of 100% if >0.90.
 - 27% of cases deferred

QFR (Medis)

Trial	Author	Year	Vessels (N)	Sensitivity(%)	Specificity (%)	Accuracy (%)
FAVOR	Tu Et Al	2014	77	74	91	86
FAVOR II	Xu Et Al	2017	328	94.6	91.7	92.7
FAVOR II J-E	Westra Et Al	2017	361	86.5	86.9	86.8
WIFI II	Westra Et Al	2017	240	77	86	83
-	Kamayama Et Al	2016	25	80	80	80
-	Yazaki Et Al	2016	151	89.1	88.6	88
	Van Rosendeal Et Al	2017	20	100	79	80
-	Legutko Et Al	2017	123	89.9	95.9	100
	Spitaleri Et Al	2018	49	88	97	94
	Emori Et Al	2018	75	87	92	82

- FAVOR Required the induction of hyperemia.
- Van Rosendeal required hyperemia induction
- WIFI II did not use bifurcation lesions. Assessment done offline. No ACS patients included.
- FAVOR II No bifurcations assessed.

FFR Angio (Cathworks)

Trial	Author	Year	Vessel (N)	Sensitivity	Specificity	Accuracy
FAST FFR	Fearon Et Al	2018	319	93.5	91.2	92.2
-	Pellicano Et Al	2017	203	88	95	93
-	Trobs Et Al	2016	100	79	94	90

- Pellicano Only assess stable CAD. All measurements were done offline.
- Diffusely diseased vessels were not interrogated.

CAFFR (RainMed)

Trial	Author	Year	Vessel (N)	Sensitivity	Specificity	Accuracy
FLASH FFR	Li Et Al	2019	328	90.4	98.6	95.7

- Pressure Drift of the FFR wire or poor angiographic quality could cause discordance in results.
- Diffusely diseased arteries were not included.

Grey Zone (FFR 0.75-0.85)

FFR of between 0.75 – 0.85 seemed to show the most variation with wire free results.

System	Accuracy
VFAI	N/A
VFFR	N/A
QFR	71 - 86%
CAFFR	89.9%
FFR ANGIO	92%

Challenges faced by Wire-Free FFR

 Coronary microcirculation and resistance are difficult to model. In Myocardial dysfunction (Diabetes/ post AMI) may cause an over estimation of the wire free FFR.

 Assumption that coronary flow is the same along the side branches (not taken into account). Thus, bifurcation lesions may be challenging to assess.

- Most trials used discreet stenosis, diffuse lesions may be more challenging to quantify.
- Some studies were done with offline computational analysis.
- Small Study population used.

• Good performance <0.75 and >0.85. Grey-zone - Variation between 0.75 – 0.85, possible need for Invasive FFR.

 <u>Clinical judgements were based on Wired-FFR</u> <u>measurements. Direct evaluation of clinical outcome of</u> <u>wire-free FFR is not possible</u>

Potential for Clinical Use

- Not technically challenging, requires 2 angiographic images 25 degrees apart.
- Data acquisition causes minimal disruption in routine angiography.
- Processing time is rapid (usually around 5 minutes)

• Use in non culprit lesions in STEMI shows good correlation with invasive FFR.

 High diagnostic accuracy and high negative predictive value – may aid clinicians to identify patients that do not need wired FFR.

In Conclusion

- Trials looked a different lesions, in a heterogenous population, thus with variable outcomes.
- Difficult to compare the trials.
- Cut-off for Wire-Free FFR may not be the same as invasive FFR.
- Further outcome based trials are required.

Thank you

