Disease Modeling and Drug Discovery with Human Pluripotent Stem Cells

Shiang Lim (Max)

Cardiac Regeneration Group

13th December 2019

Disease Modeling and Drug Discovery with Human Pluripotent Stem Cell derived vascularized and innervated cardiac organoids

Shiang Lim (Max)

Cardiac Regeneration Group

13th December 2019

Cardiovascular disease – a leading cause of death

- 17.9 million per year around the would
- 31% of all global death worldwide

20% of Australians suffer from cardiovascular disease

1.1 million hospitalization in 2015-16, 11% of all hospitalization

\$8.8 billion annually in Australia

\$351.2 billion annually in USA

An unmet medical need – Why?

Current treatment options

- Not always compatible with pre-existing conditions & medications
- Undesirable side effects

Current heart disease models

- Not clinically relevant
- Too simple

Drug efficacy and toxicity is often human-specific

The human heart is complex

Cardiac vascular system

Autonomic nervous system

An unmet medical need – Solution?

We need better drug screening model to find better medications

To develop a multicellular cardiac organoid model to faithfully recapitulate heart physiology for predictive drug testing and for novel target identification

Engineered human 3D heart organoid with integrated blood vessels and a nervous system

Induced pluripotent stem cells (iPSCs)

- Carry an individual's genetic make-up
- Unlimited source of cells
- Transform into all cell types in the body

Engineered human 3D heart organoid with integrated blood vessels and a nervous system

Cardiomyocytes derived from human iPSCs

Lim et al. (2013) Stem Cells Transl Med; 3:787 Hoque et al. (2018) Cell Death Disc; 4:39

Endothelial cells derived from human iPSCs

Kong et al. (2019) Acta Biomater, 94:281-294

Sympathetic neurons derived from human iPSCs

Engineered human 3D heart organoid with integrated blood vessels and a nervous system

Electrophysiology and contractility of cardiac organoids

Beat rate = **168.5 ± 7 bpm** (n=14)

Single cell RNA-seq of cardiac organoids

Cardiac organoids are scalable with optimal diffusion

Qtracker = 20 nm in diameter

Cardiac organoids contain interconnected vessellike structure with lumens

Cardiac organoids are vascularised and innervated

CD31+ endothelial cells

PRPH+ sympathetic neurons

Cardiac organoids can model cardiac injury

Simulated ischaemia = 2 hours Simulated reperfusion = 24 hour

Summary

3D beating heart organoids

- Human-specific
- Vascularised and innerverated
- Reproducible
- Scalable for high-throughput drug screening
- Model cardiac injury
- Future clinical trial in a dish

Acknowledgement

St Vincent's Institute

Cardiac Regeneration (OBI) Jarmon Lees Priya Sivakumaran Anne Kong

Vascular Biology (OBI) Geraldine Mitchell

Bioinformatics & Cellular Genomics Davis McCarthy Ruqian Lyu

University of Wollongong Mirella Dottori

University of Melbourne

Alice Pébay Damián Hernández Andrew Allen Jaspreet Bassi

Swinburne University

Gavin Lambert Nina Eikelis

<u>WEHI</u>

Edwin Hawkins Joy Liu Stephen Wilcox Casey Anttila

Funding

Stafford Fox Medical Research NHMRC St Vincent's REF CASS Foundation National Ataxia Foundation

