Step-by-step approach for antegrade wire escalation and antegrade dissection/re-entry techniques

Seoul National University Bundang Hospital Chang Hwan Yoon, MD, Prof.

The J-CTO (Multicenter CTO Registry in Japan) Score as a Difficulty Grading and Time Assessment Tool

Case Selection Guided by the J-CTO Score

Four wire crossing strategies in CTO

Proportion of the final successful strategy

Final strategy depends on J-CTO score

Final strategy per J-CTO score

Algorithm for CTO crossing

Brilakis et al., JACC CVI, 2012

The Main Algorithm for CTO Crossing

Hardingg et al., JACC CVI, 2017,

Essentials for antegrade wiring

• Anatomy: dual injection or CT angiography

Use of microcatheter

• Wire escalation

• Multiple angle projection (to identify the wire and target vessel positions)

Various types of CTO lesions and different strategies

Wire tip to find loose tissue track

Wire to track soft tissue to distal vessel

Puncture proximal cap

Wire CTO if short + good distal visibility

Required Wire Properties

1:1 Torque Response

XTA / XTR / Fighter / Whisper

Algorithm for Antegrade Wire Escalation

Proximal Cap	Visible channel Low penetration force wire with polymer jacket and tapered tip	Tapered proximal cap Low penetration force wire	Blunt proximal cap Intermediate penetration force wire			
CTO body	If a high penetration-force wire has been used to the puncture proximal cap step down to a lower penetration-force wire unless occlusion short with unambiguous course.					
Distal Cap	Escalation from softer me	ore steerable wire to a hig wire may be required.	gher penetration-force			

Guidewires Commonly Used for CTO Crossing

Wire Category	Wire Name	Polymer Jacket	Tapered Tip (inch)	Tip Load (gf)	Manufacturer
Low penetration force	Fielder XT*	1	0.009	0.8	Asahi Intecc
	Fielder XT-R*	1	0.010	0.6	Asahi Intecc
	Fielder XT-A*	1	0.010	1.0	Asahi Intecc
	Pilot 50	✓	×	1.5	Abbott Vascular
	Fighter	1	0.009	1.5	Boston Scientific
	Hornet	×	0.008	1.0	Boston Scientific
	Gaia 1st	×	0.010	1.7	Asahi Intecc
	Cross-it 100XT	×	0.010	2.0	Abbott Vascular
Intermediate penetration	Pilot 150	1	×	2.7	Abbott Vascular
force	Pilot 200*	1	×	4.1	Abbott Vascular
	Gladius	1	×	3.0	Asahi Intecc
	Miracle 3	×	×	3.0	Asahi Intecc
	Ultimate 3*	×	×	3.0	Asahi Intecc
	Gaia 2nd*	×	0.010	3.5	Asahi Intecc
	Cross-it 200	×	0.011	3.0	Abbott Vascular
High penetration force	Conquest Pro*	✓	0.009	9.0	Asahi Intecc
	Conquest Pro 12*	1	0.009	12.0	Asahi Intecc
	Gaia 3rd*	×	0.012	4.5	Asahi Intecc
	Hornet 10	×	0.008	10.0	Boston Scientific
	Hornet 14	×	0.008	14.0	Boston Scientific
	PROGRESS 200T	×	0.009	13.0	Abbott Vascular
	Miracle 12	×	×	12.0	Asahi Intecc

*Most commonly used guidewires

Hardingg et al., JACC CVI, 2017,

Typical antegrade wire escalation technique

IVUS catheters used for CTO intervention

Company	Catheter	Tip to Transducer	Scan Type	Image
Volcano	Eagle Eye Platinum ST	2.5mm	Electronic scan type	← 2.5mm
Volcano	Eagle Eye Platinum	10mm	Electronic scan type	← → 10mm
TERUMO	Navi Focus WR	9mm	Mechanical Scan type	9.0mm
Boston	OptiCross	20mm	Mechanical Scan type	← → 20mm

ADR device

Reentry using Stingray

Randomized Comparison of a CrossBoss First Versus Standard Wire Escalation Strategy for Crossing Coronary Chronic Total Occlusions

The CrossBoss First Trial

CONCLUSIONS As compared with wire escalation, upfront use of the CrossBoss catheter for antegrade crossing of coronary chronic total occlusions was associated with similar crossing time, similar success and complication rates, and similar equipment use and cost. (J Am Coll Cardiol Intv 2018;11:225–33) © 2018 the American College of Cardiology Foundation. Published by Elsevier. All rights reserved.

Technical procedural success : 87.8% and 84.1% *Stingray success rate:* 63% (51/81)

WHAT IS NEXT? New devices and crossing techniques are needed to further improve the success rates and procedural efficiency and reduce the complication rates of coronary chronic total occlusion interventions.

J Am Coll Cardiol Intv 2018;11:225–33

Long mRCA CTO

Sion wire for loose channel tracking

Wire escalation to Gaia 1st

Additional escalation to Gaia 2nd

CrossBoss for controlled dissection 1

CrossBoss for controlled dissection 2

Wire escalation to Gaia 3rd

Successful guidewire and microcatheter passage

27

mRCA ISR CTO, very tough proximal cap

Conquest pro with CrossBoss for ADR

No progression of CrossBoss

Gaia 1st and Corsair microcatheter

Successful guidewire and microcatheter delivery

Llong LAD CTO with OM collateral to dLAD

Collateral channel from RCA to mLAD

Fielder XT-A in a false lumen

Wire escalation to Gaia 1st and Redirection, but hard to enter the dLAD

When you are sure that the wire is in the true lumen \rightarrow Tip injection confirmed true lumen at mLAD

Small balloon angioplasty to mLAD

Tracking with parallel guidewires (Runthrough in the false lumen and Gaia 1st for the tracking)

IVUS to recheck the correct pathway (Vessel size and anatomy of septal and diagonal branches)

Dual injection to identify the target lesion anatomy

Slow advancing the Gaia 1st wire

Checking the route in a different angle

Freely moving wire to the dLAD

Antegrade flow to dLAD was obtained.

Sometimes, we need more than 3 parallel wires

Failed to enter the true lumen

Wire escalation to Conquest pro to puncture the distal cap

Ambiguous LAD ostium on dual injection

There is proximal stump on a different projection

Unstable Guiding support \rightarrow a wire in LCX

Target entry site: small dimpling at LAD ostium

Soft wire tracking through the dimpling

After three time false lumen wiring with the soft wire, an escalated wire go into the true lumen

Summary (Chain of Success)

Thank you for your attention !!