
Sex Difference of Long-term Outcomes on Coronary Microvascular Dysfunction

Ju-Hyun Chung Ulsan Medical Center, Ulsan Hospital Dec 13, 2019

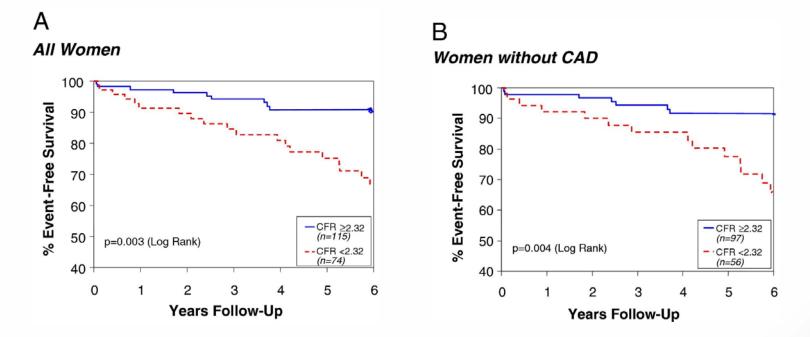
Patient with Microvascular Disease

Korean Circ J. 2018 Mar;48(3):179-190.

Angina with Non-obstructive Coronary Artery

- More common in women
- Prognosis is not benign
- Coronary micro-circulatory disease?

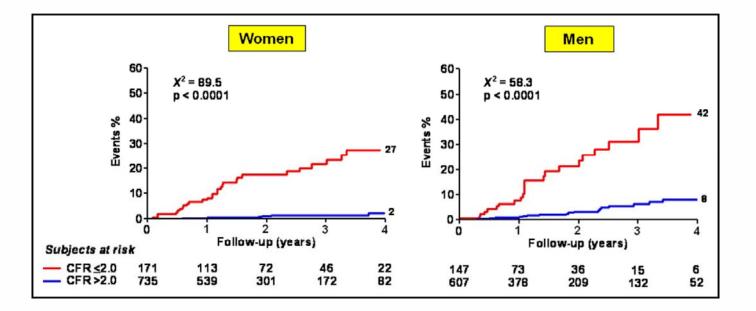
Table. Prevalence of "Normal" and Nonobstructive Coronary Arteries in Women Compared With Men


	No./To		
	Women	Men	P Value
Acute coronary syndrome GUSTO ²	343/1768 (19.4)	394/4638 (8.4)	<.001
TIMI 18 ³	95/555 (17)	99/1091 (9)	<.001
Unstable angina ²	252/826 (30.5)	220/1580 (13.9)	<.001
TIMI IIIa ⁶	30/113 (26.5)	27/278 (8.3)	<.001
MI without ST-segment elevation ²	41/450 (9.1)	55/1299 (4.2)	.001
MI with ST-segment elevation ²	50/492 (10.2)	119/1759 (6.8)	.02

JAMA. 2005;293:477-484

CFR for non-obstructive CAD in women

- Could predict major adverse outcomes (Death, MI, stroke, or hospital stay for HF)
- 189 women, 5.4 years F/U



J Am Coll Cardiol 2010;55:2825-32

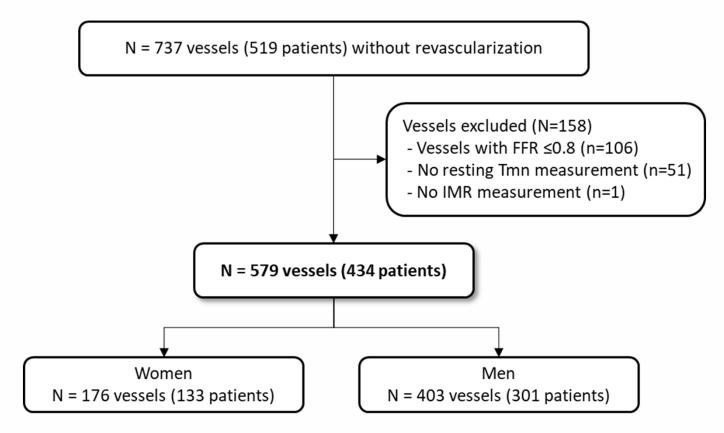
CFR with chest pain syndrome and normal stress echoCG

- LAD only
- 1,660 patients (906 women, 754 men), 4 years

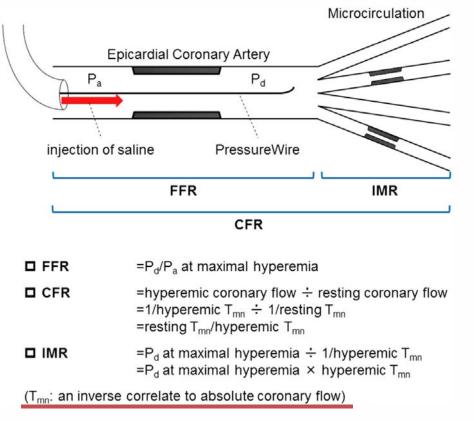
Am J Cardiol 2010;106: 1703-1708

Purpose

- Limited data on the use of CFR and IMR as measures of the coronary microvasculature between women and men.
- CFR is affected not only by microvascular function, but also epicardial flow.
- In contrast, IMR is a direct measure of the microcirculation which is independent of variations in hemodynamic state.


Sex difference in microvascular dysfunction and its effect on long-term outcomes?

Patient selection


- Consecutive patients who underwent clinically indicated invasive coronary angiography and measurements of CFR, IMR and FFR in at least 1 coronary artery were prospectively enrolled.
- 5 University Hospitals in Korea
- Patients with hemodynamic instability, LV dysfunction, or a culprit vessel of acute coronary syndrome were excluded.
- Vessels with FFR ≤0.80 despite of the absence of angiographic obstructive disease were also excluded.
- Primary endpoint
 - MACE (a composite of cardiac death, MI, or revascularization) at 5 years

Physiological assessment

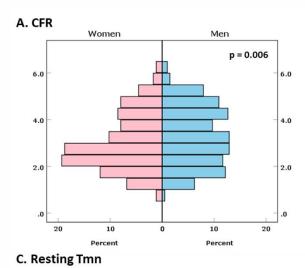
- Single coronary pressure wire

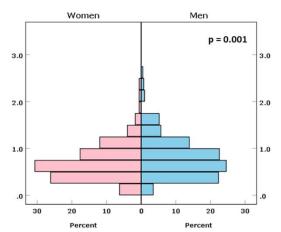
JACC Cardiovasc Interv. 2015;8:1433-1441

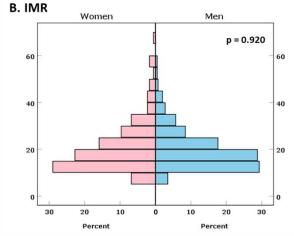
9

Lesion classification

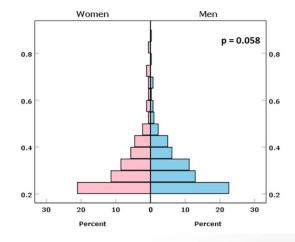
- Vessel-specific CMD: CFR ≤ 2.0 or IMR ≥ 23 .
- Subdivided CFR into resting flow and hyperemic flow using the median rTmn and hTmn.
- Subdivided lesions into 4 groups according to sex and each coronary physiologic index.
- Median values were used as cutoff values for rTmn (0.72) and hTmn (0.22).


Patient clinical characteristics


	Total	Women	Men	p value
Per-patient analysis	n = 434	n = 133	n = 301	
General characteristics				
Age, years	61.2 ± 10.4	62.7 ± 10.1	60.5 ± 10.4	0.037
Body mass index, kg/m2	24.5 ± 2.9	24.7 ± 3.1	24.4 ± 2.7	0.434
Ejection fraction, %	62.4 ± 9.0	64.5 ± 7.3	61.5 ± 9.6	0.002
Cardiovascular risk factors				
Hypertension	249 (57.4)	77 (57.9)	172 (57.1)	0.884
Diabetes mellitus	121 (27.9)	36 (27.1)	85 (28.2)	0.802
Hypercholesterolemia	261 (60.1)	70 (52.6)	191 (63.5)	0.034
Current smoker	80 (18.4)	4 (3.0)	76 (25.2)	<0.001
Family history of CAD	70 (16.1)	21 (15.8)	49 (16.3)	0.898
Previous PCI	122 (28.1)	27 (20.3)	95 (31.6)	0.016
Clinical presentation				0.703
Stable angina	361 (83.2)	112 (84.2)	249 (82.7)	
Unstable angina/NSTEMI	73 (16.8)	21 (15.8)	52 (17.3)	
Severity of CAD				
Multivessel disease	190 (43.8)	42 (31.6)	148 (49.2)	0.001
SYNTAX score	6.0 [0.0-12.0]	2.0 [0.0-9.0]	7.0 [2.0-13.0]	<0.001


Angiographic and physiologic indexes

	Total	Women	Men	p value	
Per-vessel analysis	n = 579	n = 176	n = 403		
Measured vessel location				0.006	
Left anterior descending artery	304 (52.5)	110 (62.5)	194 (48.1)		
Left circumflex artery	120 (20.7)	29 (16.5)	91 (22.6)		
Right coronary artery	155 (26.8)	37 (21.0)	118 (29.3)		
Quantitative coronary angiography					
Reference diameter, mm	3.04 ± 0.60	2.96 ± 0.59	3.07 ± 0.60	0.033	
Diameter stenosis, %	37.7 ± 15.1	35.3 ± 14.0	38.7 ± 15.4	0.015	
Lesion length, mm	10.2 ± 6.8	9.8 ± 6.7	10.4 ± 6.8	0.356	
Coronary physiological parameters					
FFR	0.90 [0.86–0.95]	0.91 [0.87–0.96]	0.90 [0.86–0.95]	0.037	
CFR	3.00 [2.20-4.22]	2.69 [2.08-3.90]	3.20 [2.20-4.31]	0.006	
IMR	17.2 [13.4-23.4]	17.9 [13.0-25.0]	17.1 [13.7-23.0]	0.920	
Resting Tmn	0.72 [0.48-0.99]	0.61 [0.43-0.89]	0.75 [0.49-1.03]	0.001	
Hyperemic Tmn	0.22 [0.17-0.30]	0.20 [0.16-0.30]	0.22 [0.17-0.30]	0.058	
Vessel-specific CMD*	241 (41.6)	82 (46.6)	159 (39.5)	0.109	
CFR ≤2.0	125 (21.6)	43 (24.4)	82 (20.3)		
IMR ≥23	155 (26.8)	53 (30.1)	102 (25.3)		


Distribution of CFR and IMR according to sex

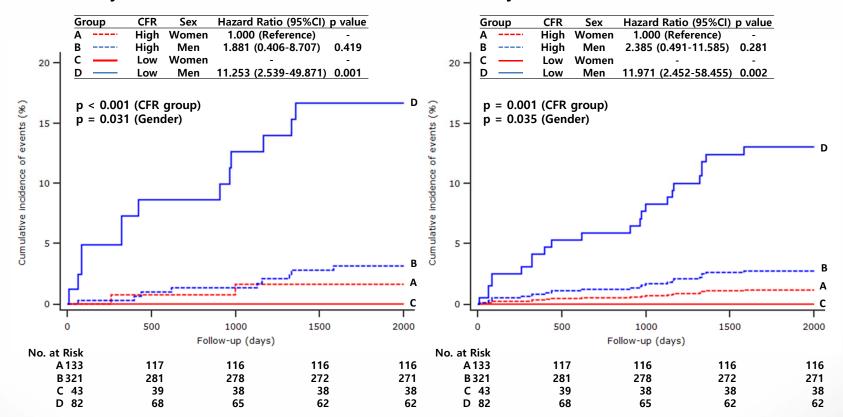
Clinical outcomes at 5 years

	Incidence		Unadjusted	l	Adjusted†		
	Women (n = 176)	Men (n = 403)	p value	HR (95%CI)	p value	HR (95%CI)	p value
Cardiac death	1 (0.6)	13 (3.2)	0.056	5.761 (0.754-44.038)	0.092	7.021 (0.820-60.091)	0.075
Vessel specific myocardial infarction	o	2 (0.5)	0.349	-	-	-	-
Vessel specific revascularization	1 (0.6)	9 (2.2)	0.179	4.060 (0.514-32.047)	0.184	1.981 (0.215-18.279)	0.547
MACE	2 (1.1)	22 (5.5)	0.017	4.911 (1.155-20.885)	0.031	5.164 (1.120-23.804)	0.035

†The included covariables were age, sex, hypertension, diabetes mellitus, hypercholesterolemia, acute coronary syndrome, family history of CAD, current smoking, previous PCI, multivessel disease, ejection fraction, and low CFR.

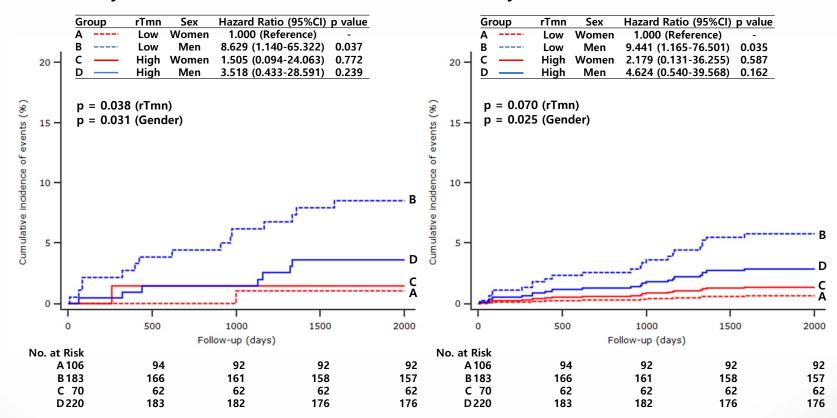
Independent predictors of MACE at 5 years

	Total		Men*		
	HR (95% CI)	p value	HR (95% CI)	p value	
Sex (Men)	5.164 (1.120-23.80)	0.035	-	-	
Diabetes mellitus	2.951 (1.209-7.207)	0.017	2.931 (1.125-7.642)	0.028	
Low CFR (≤2.0)	4.041 (1.729-9.448)	0.001	4.576 (1.850-11.32)	0.001	


*In the women group, coefficients did not converge due to the small event rates and thus, no model was fitted for further analysis.

Cumulative incidence according to CFR and sex

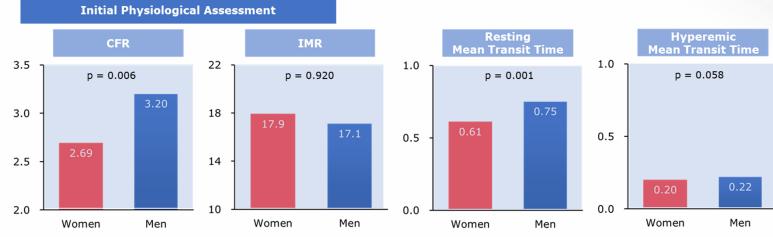
A. Unadjusted


B. Adjusted

Cumulative incidence according to resting mean transit time and sex

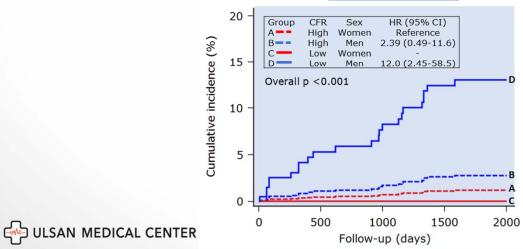
A. Unadjusted

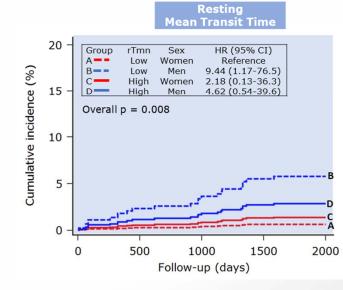
B. Adjusted


Summary

- The prevalence of CMD was high and no different between the sexes
- Resting flow was higher in women while hyperemic flow was similar between the sexes
- Men, diabetes mellitus and low CFR were independent predictors for MACE
- In men, a low versus high CFR resulted in a significant 4.6-fold higher risk of MACE, which

was not seen in women.




Summary

Adjusted 5-Year MACE

19

Conclusion

For deferred lesions

- There was no difference in microvascular function between men and women by IMR.
- CFR was lower in women due to a higher resting coronary flow, however, long-term

clinical outcomes in deferred lesions were better in women compared with men.

[JCR 2019]

Thank you.

Ju-Hyun Chung Ulsan Medical Center Dec 13, 2019