# COBIS III,

# where are we from and where we go?

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

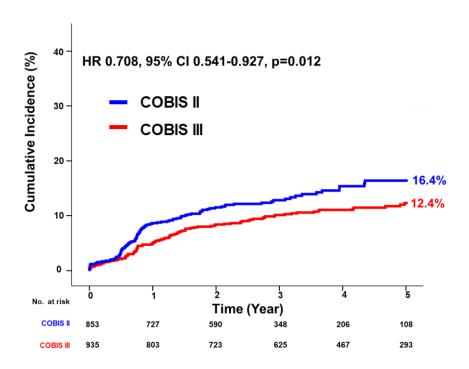




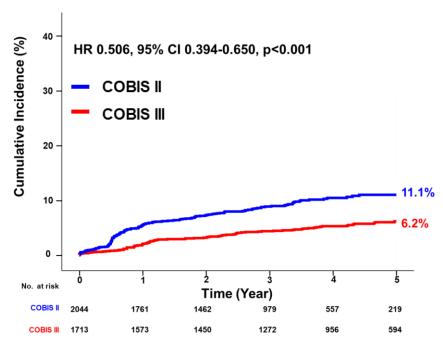
#### **COBIS** st

- KBC research committee
- Dedicated QCA core laboratory
- CRO
- Independent statistical analysis team
- Event adjudication committee
- Investigator-initiated nation wide multicenter regist
- Endorsed by Korean Society of Interventional Car
- Sponsored and managed by Korean Bifurcation C

| COBIS I       | COBIS II                               | COBIS III                                                                       |
|---------------|----------------------------------------|---------------------------------------------------------------------------------|
| 1691          | 2897                                   | 2648                                                                            |
| 2004.1~2006.6 | 2003.1 ~ 2009.12                       | 2010.1 ~ 2014.12                                                                |
|               |                                        |                                                                                 |
| ≥ 2.5         | ≥ 2.5                                  | ≥ 2.5                                                                           |
| ≥ 2.0         | ≥ 2.3                                  | ≥ 2.3 (by QCA)                                                                  |
| X             | 0                                      | 0                                                                               |
| <b>1</b> st   | 1st + 2nd                              | 2 <sup>nd</sup> only                                                            |
| 25 months     | 38 months                              | 53 months                                                                       |
|               | 1691 2004.1~2006.6  ≥ 2.5 ≥ 2.0  X 1st | 1691 2897 2004.1~2006.6 2003.1 ~ 2009.12  ≥ 2.5 ≥ 2.0  X  O  1st  1st 1st + 2nd |




2


## What makes the difference?

## Device? Concept? Technique?

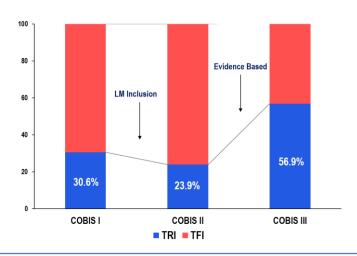
#### TLF in LM bifurcation



#### TLF in non-LM bifurcation



3


## What makes the difference?

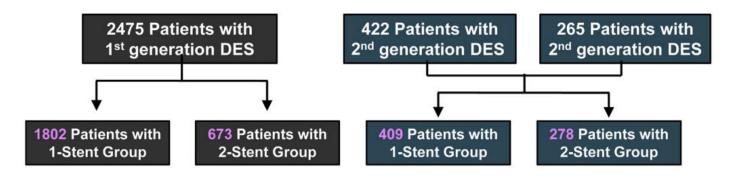
Device? Concept? Technique?

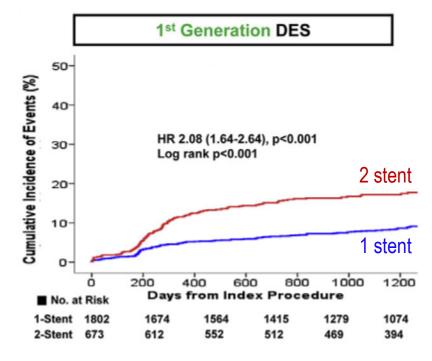
- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

#### **COBIS** Registry

#### Transradial vs. Transfemoral for Bifurcation PCI



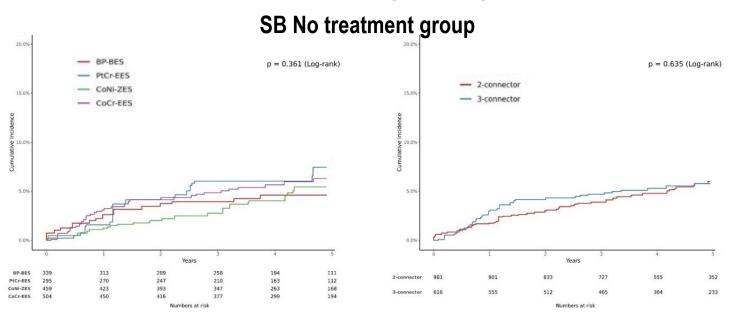

- LM bifurcation lesions from COBIS II (N=853)
- Transradial (N=212, 24.9%) vs. Transfemoral (N=641)
- Propensity score-matched analysis (1:2 ratio, 161 pairs)

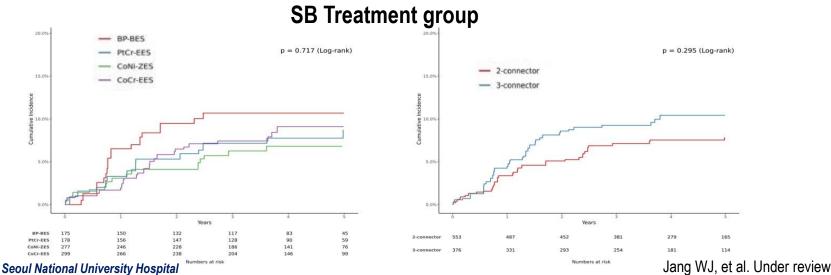

|                              | Transradial (N=161) | Transfemoral (N=322) | Adjusted HR<br>(95% CI) | р    |
|------------------------------|---------------------|----------------------|-------------------------|------|
| MACE                         | 14 (8.7)            | 37 (11.5)            | 0.48 (0.22-1.03)        | 0.06 |
| Cardiac death                | 4 (2.5)             | 5 (1.6)              | 0.33 (0.02-4.97)        | 0.42 |
| Cardiac death or MI          | 7 (4.3)             | 8 (2.5)              | 1.42 (0.35-5.69)        | 0.62 |
| TLR                          | 7 (4.3)             | 32 (9.9)             | 0.30 (0.11-0.81)        | 0.02 |
|                              |                     |                      |                         |      |
| TIMI major or minor bleeding | 4 (2.5)             | 27 (8.4)             |                         | 0.01 |



#### Korean Bifurcation Pooled Cohort

## 1<sup>st</sup> vs. 2<sup>nd</sup> generation DES

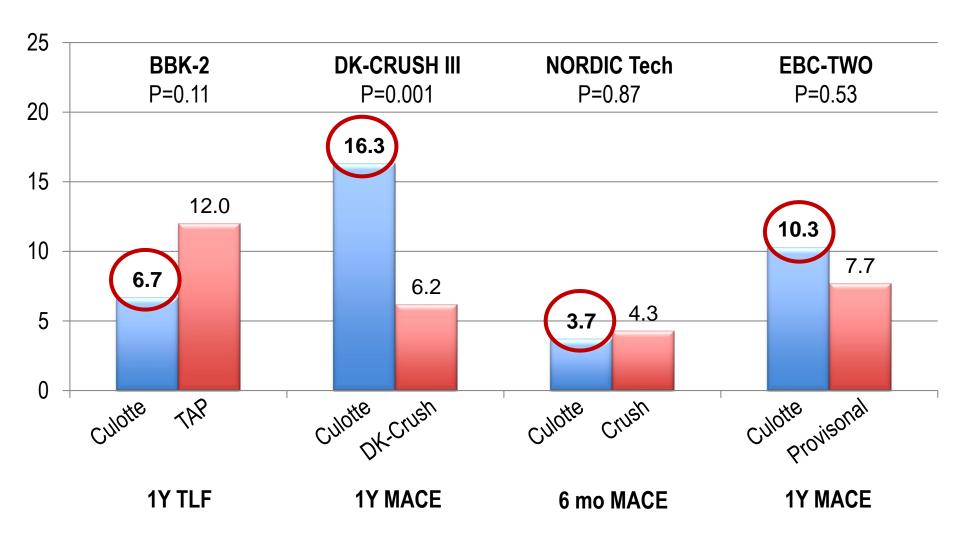





#### **COBIS III registry**

## Clinical outcome among 2<sup>nd</sup> generation DES

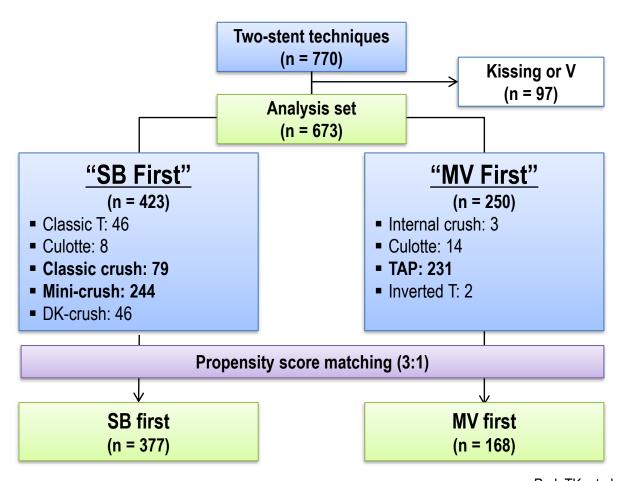





Cardiovascular Center

#### What is the best 2-stent technique?

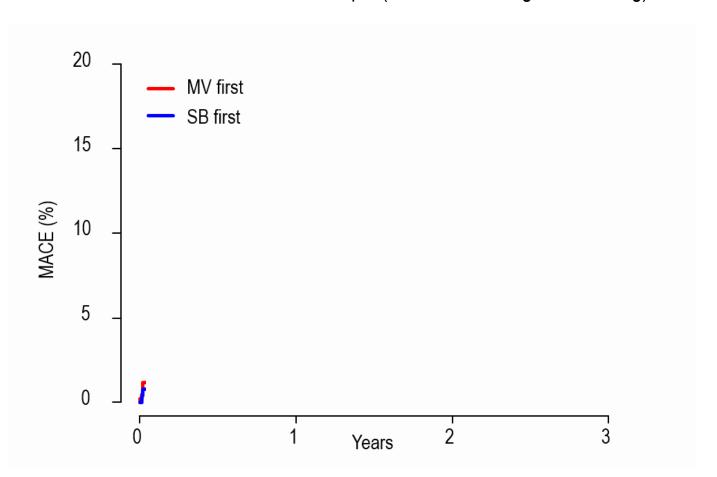
TAP technique? Culotte technique? DK crush technique?



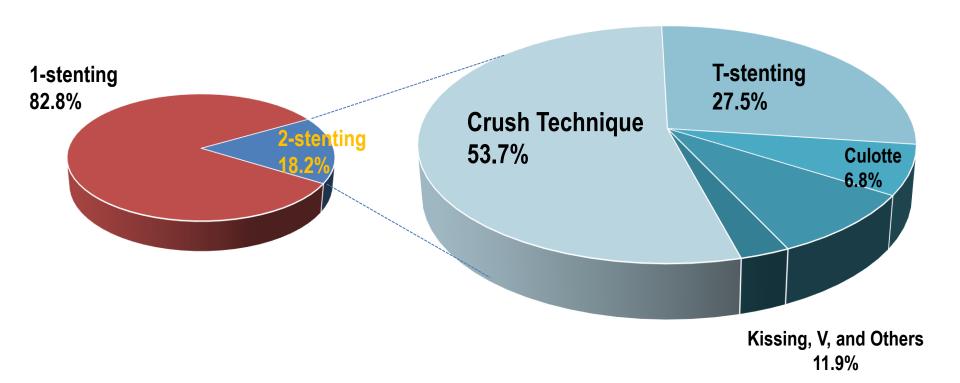



#### **COBIS II registry**

## What is the best 2-stent technique?


N=673, treated with 2-stent technique (exclusion: kissing or V-stenting)

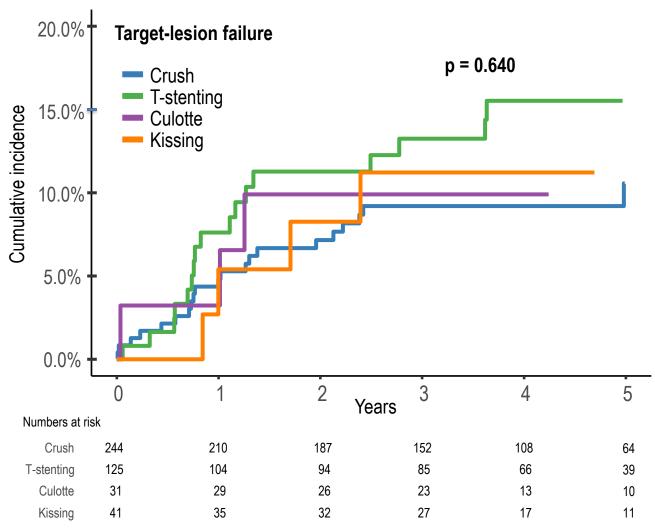



#### **COBIS II registry**

## What is the best 2-stent technique?

• N=673, treated with 2-stent technique (exclusion: kissing or V-stenting)




# COBIS III registry What is the best 2-stent technique?



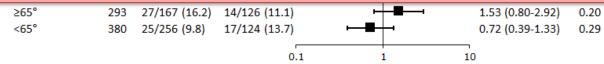


#### **COBIS III registry**

## What is the best 2-stent technique?






#### Insight from COBIS II registry

#### What is the best 2-stent technique?

| Subgroup      | Patient | s TL          | R (%)         | Favor    | Favor    | Hazard ratio     | p value | p for       |
|---------------|---------|---------------|---------------|----------|----------|------------------|---------|-------------|
|               |         | SB first      | MV first      | SB first | MV first | (95% CI)         |         | Interaction |
| MV RD         |         |               |               |          |          |                  |         | 0.52        |
| ≥3.25 mm      | 217     | 12/120 (10.0) | 12/97 (12.4)  |          | <b></b>  | 0.80 (0.36-1.78) | 0.59    |             |
| <3.25 mm      | 456     | 40/303 (13.2) | 19/153 (12.4) | <b>—</b> | <b>-</b> | 1.09 (0.63-1.88) | 0.77    |             |
| SB RD         |         |               |               |          |          |                  |         | 0.54        |
| ≥2.5 mm       | 276     | 20/151 (13.2) | 19/125 (15.2) |          | <b>—</b> | 0.92 (0.49-1.72) | 0.79    |             |
| <2.5 mm       | 397     | 32/272 (11.8) | 12/125 (9.6)  | _        | <b>-</b> | 1.23 (0.63-2.38) | 0.55    |             |
| SB RD > MV RD |         |               |               |          |          |                  |         | 0.78        |

| Subgroup         | Patients | TL            | R (%)         | Favor        | Favor       | Hazard ratio     | p value | p for       |
|------------------|----------|---------------|---------------|--------------|-------------|------------------|---------|-------------|
|                  |          | SB first      | MV first      | SB first     | MV first    | (95% CI)         |         | Interaction |
| MV DS            |          |               |               |              |             |                  |         | 0.04        |
| ≥70%             | 257      | 22/156 (14.1) | 8/101 (7.9)   | ٠            | -           | 1.94 (0.86-4.36) | 0.11    |             |
| <70%             | 416      | 30/267 (11.2) | 23/149 (15.4) | <b>⊢</b>     | <b>-</b> -  | 0.71 (0.41-1.22) | 0.22    |             |
| SB DS > MV DS    |          |               |               |              |             |                  |         | 0.008       |
| Yes              | 252      | 17/189 (9.0)  | 12/63 (19.0)  | <del> </del> |             | 0.44 (0.21-0.92) | 0.03    |             |
| No               | 420      | 35/234 (15.0) | 19/186 (10.2) |              | <del></del> | 1.54 (0.88-2.68) | 0.13    |             |
| MV Lesion Length |          |               |               |              |             |                  |         | 0.01        |
| ≥18 mm           | 329      | 36/215 (16.7) | 11/114 (9.7)  | 1            | -           | 1.79 (0.91-3.53) | 0.09    |             |
| <18 mm           | 344      | 16/208 (7.7)  | 20/136 (14.7) | -            | +           | 0.53 (0.27-1.01) | 0.05    |             |

#### "MORE severe lesion FIRST" strategy for cases requiring systematic 2 stenting.





## What makes the difference?

## Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon....
- Better concept: Imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

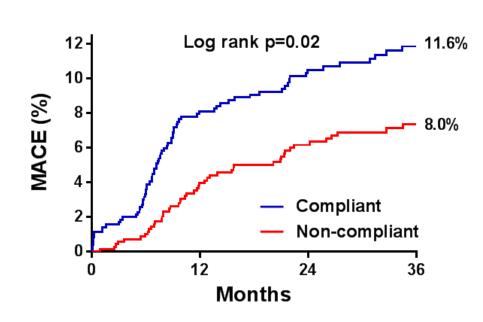
## "KISS" for 1-stent technique: Good or Bad?

|                                            | Number<br>Design    | Primary endpoint | Outcomes                                   | Results | Memo                              |
|--------------------------------------------|---------------------|------------------|--------------------------------------------|---------|-----------------------------------|
| Niemela M (NORDIC III)<br>Circulation 2011 | N=477<br>RCT        | 6-mo MACE        | FKB 2.9%, non-FKB 2.9%<br>P=NS             | Neutral |                                   |
| Gwon HC (COBIS I)<br>Heart 2012            | N=1,065<br>Registry | 2-year MACE      | FKB 9.5%, non-FKB 4.5%<br>p=0.02           | Bad     | Higher MV TLR<br>in FKB group     |
| Yamawaki M<br>Circ J 2014                  | N=253<br>Registry   | 3-year MACE      | FKB 14.6% vs. non-FKB 6.9% p=0.07          | Bad     | Higher MV restenosis in FKB-group |
| Kim TH<br>Int J Cardiol 2014               | N=251<br>Registry   | 3-year MACE      | FKB HR=0.40 (95% CI 0.19-0.84),<br>p=0.015 | Good    | ACS patients                      |
| Biondi-Zoccai G<br>Heart Vessels 2014      | N=2,813<br>Registry | 2-year MACE      | HR=1.01 (0.80–1.23)<br>p=0.91              | Neutral |                                   |
| Gao Z<br>Chin Med J 2015                   | N=790<br>Registry   | 4-year MACE      | FKB: 7.8%, non-FKB 10.0% p=0.33            | Neutral | Left main bifurcation             |
| Kim YH (CROSS)<br>JACC CVI 2015            | N=306<br>RCT        | 1-year MACE      | FKB 14.0%, non-FKB 11.6%<br>p=0.57         | Bad     | Higher MV restenosis in FKB group |
| Yu CW (COBIS II)<br>JACC CVI 2015          | N=1,901<br>Registry | 3-year MACE      | HR=0.50 (95% CI: 0.30- 0.85),p = 0.01      | Good    | Lower MV TLR<br>in FKB group      |



#### **COBIS II Registry**

#### "KISS" for 1-stent techniques


- Treated with 1-stent technique: N=1,901
- Final kissing ballooning (FKB): N=620 → PSM matched analysis: N=545 pairs

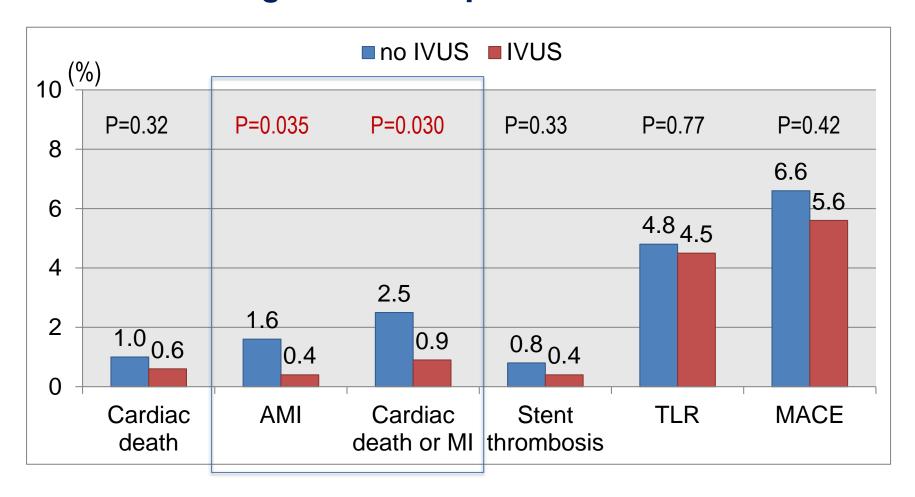
|                   |                                   |                                   |             | 1                          |                      |                                |          |
|-------------------|-----------------------------------|-----------------------------------|-------------|----------------------------|----------------------|--------------------------------|----------|
|                   | P                                 | ropensity-Matche                  | d Populatio | n                          |                      | A 11 ( 1115                    |          |
|                   | FKB<br>(n = 545)                  | Non-FKB<br>(n = 545)              | p Value     | Standardized<br>Difference |                      | Adjusted HR<br>(95% CI)        | p        |
| After MV stenting |                                   |                                   |             |                            |                      | 0 -0 (0 00 0 0-)               | 0.04     |
| Main vessel       |                                   |                                   |             |                            | MACE                 | <b>0.50</b> (0.30-0.85)        | 0.01     |
| Proximal MLD      | $3.07 \pm 0.55$                   | $\textbf{3.02} \pm \textbf{0.58}$ | 0.85        | 9.2                        |                      | 0.50 (0.44.0.00)               | 0.07     |
| Middle MLD        | $2.76\pm0.54$                     | $\textbf{2.71} \pm \textbf{0.56}$ | 0.72        | 9.6                        | Cardiac death        | 0.50 (0.11-2.29)               | 0.37     |
| Distal MLD        | $2.76\pm0.49$                     | $\textbf{2.72} \pm \textbf{0.54}$ | 0.85        | 8.6                        | N A1                 | 0.40 (0.04.00.4)               | 0.40     |
| Side branch       |                                   |                                   |             |                            | MI                   | 0.18 (0.01-20.4)               | 0.48     |
| Ostial MLD        | $1.26\pm0.73$                     | $\textbf{1.25} \pm \textbf{0.69}$ | 0.71        | 1.3                        | 0                    |                                |          |
| Distal MLD        | 2.02 + 0.69                       | 1.96 + 0.68                       | 0.67        | 7.8                        | Stent thrombosis,    | 0 77 (0 17 2 15)               | 0.73     |
| Final             | FKF                               | 3 reduces                         | main v      | vessel TLF                 | R, not side branch T |                                | 0.10     |
| Main vessel       |                                   |                                   |             |                            |                      |                                |          |
| Proximal MI       |                                   | "Ge                               | ntie i      | KISS for                   | MB and SB"           | 1)                             | 0.02     |
| Middle MLD        | $2.86 \pm 0.50$                   | $2.72 \pm 0.56$                   | 0.001       |                            |                      | 0 = 1 (0 00 0 00)              |          |
| Distal MLD        | $2.83 \pm 0.48$                   | $2.73\pm0.55$                     | 0.04        |                            | Main vessel          | <b>0.51</b> (0.28-0.93)        | 0.03     |
| Side branch       |                                   |                                   |             |                            | 0:1.1                | 0.57 (0.04.4.07)               | 0.04     |
| Ostial MLD        | $\textbf{1.85} \pm \textbf{0.62}$ | $\textbf{1.36} \pm \textbf{0.69}$ | < 0.001     |                            | Side branch          | 0.57 (0.24-1.37)               | 0.21     |
| Distal MLD        | $2.15\pm0.59$                     | $\textbf{1.99} \pm \textbf{0.68}$ | 0.04        |                            |                      |                                |          |
|                   |                                   |                                   |             |                            | Yu CV                | V and Yang JH, et al. JACC Int | erv 2015 |

# COBIS II Registry Clinical impact of NC balloon

- Use of non-compliant balloon: N=752, 26.0%
- Propensity score-matched analysis: N=710 pairs

|                      | СВ    | NCB   | p     |
|----------------------|-------|-------|-------|
| Dissection >type B   | 1.1%  | 0.1%  | 0.046 |
| Angiographic success |       |       |       |
| Main vessel          | 99.0% | 98.7% | 0.80  |
| Side branch          | 75.4% | 79.7% | 0.03  |
| In-hospital MI       | 0.8%  | 0%    | 0.04  |






## What makes the difference?

## Device? Concept? Technique?

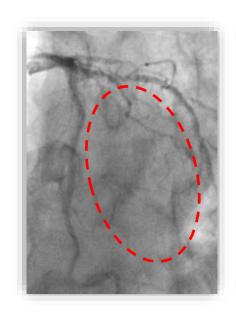
- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

# COBIS Registry IVUS guidance improves outcomes





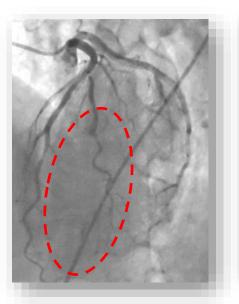
#### **COBIS II Registry**


#### True vs. Non-true bifurcation lesions: Clinical relevance of SB

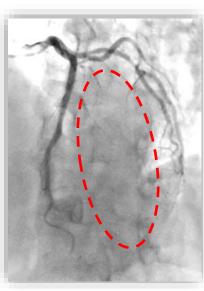
| Subgroup          | Patients | MACI       | (%)       |              |            | Adjusted HR      | P value | P for       |
|-------------------|----------|------------|-----------|--------------|------------|------------------|---------|-------------|
|                   |          | True       | NonTrue   |              |            | (95% CI)         |         | Interaction |
| DM                |          |            |           |              |            |                  |         |             |
| Yes               | 840      | 69 (15.8)  | 35 (8.7)  |              | 1          | .95 (1.24-3.07)  | 0.004   | 0.10        |
| No                | 2057     | 112 (10.5) | 80 (8.1)  | <b>-</b> ■4  | 1          | 18 (0.86-1.61)   | 0.31    | 0.10        |
| Presentation      |          |            |           |              |            |                  |         |             |
| ACS               | 1798     | 117 (12.2) | 71 (8.5)  | -            | 1          | 35 (0.98-1.86)   | 0.06    | 0.00        |
| Non-ACS           | 1099     | 64 (11.8)  | 44 (7.9)  | -            | 1          | .56 (1.01-2.42)  | 0.05    | 0.69        |
| Left main         |          |            |           |              |            |                  |         |             |
| Yes               | 853      | 66 (18.4)  | 48 (9.7)  | -            | 1          | .22 (0.78-1.90)  | 0.38    | 0.42        |
| No                | 2044     | 115 (10.1) | 67 (7.4)  | <b>1⊞</b> 4  | 1          | .42 (1.04-1.95)  | 0.03    | 0.43        |
| Two stent         |          |            |           |              |            |                  |         |             |
| Yes               | 770      | 102 (17.8) | 23 (11.7) | -            | 1          | 54 (0.97-2.43)   | 0.07    | 0.40        |
| No                | 2127     | 79 (8.5)   | 92 (7.7)  | •            | 1          | .20 (0.87-1.65)  | 0.28    | 0.49        |
| FKB               |          |            |           |              |            |                  |         |             |
| Yes               | 1349     | 109 (12.8) | 39 (7.9)  | <b>⊢⊞</b> -1 | 1          | 56 (1.06-2.30)   | 0.03    | 0.74        |
| No                | 1548     | 72 (11.1)  | 76 (8.5)  | <b></b>      | 1          | 23 (0.87-1.76)   | 0.25    | 0.74        |
| Туре              |          |            |           | _            | _          |                  |         |             |
| 1st FOCI          | is on    | true       | hifu      | rcation      | wit        | h large          | SR      | <b>D.53</b> |
| 2 <sup>nd</sup>   | 40 011   | uuu        | MIIGI     | Jation       | *****      | ii iai go        |         | 1.53        |
| SB reference dian | neter    |            |           |              |            |                  |         |             |
| >2.5 mm           | 1154     | 72 (14.0)  | 43 (6.7)  | -            | <b>-</b> 2 | 2.16 (1.48-3.15) | <0.001  | 0.02        |
| ≤2.5 mm           | 1741     | 109 (11.0) | 72 (9.6)  | •            | 1          | 20 (0.89-1.62)   | 0.23    | 0.02        |
|                   |          |            | _ '       |              |            |                  |         |             |
|                   |          |            | 0.        | 1 1          | 10         |                  |         |             |

True better True worse



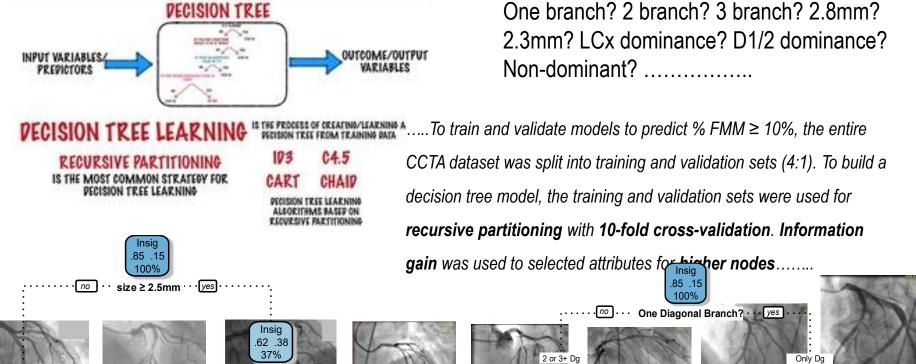

# How large is large enough?

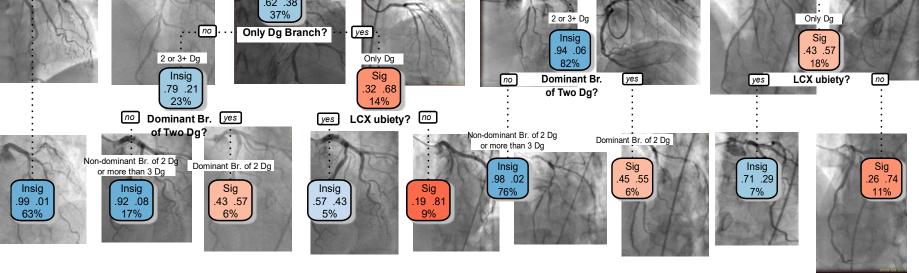



% ischemia: 15%



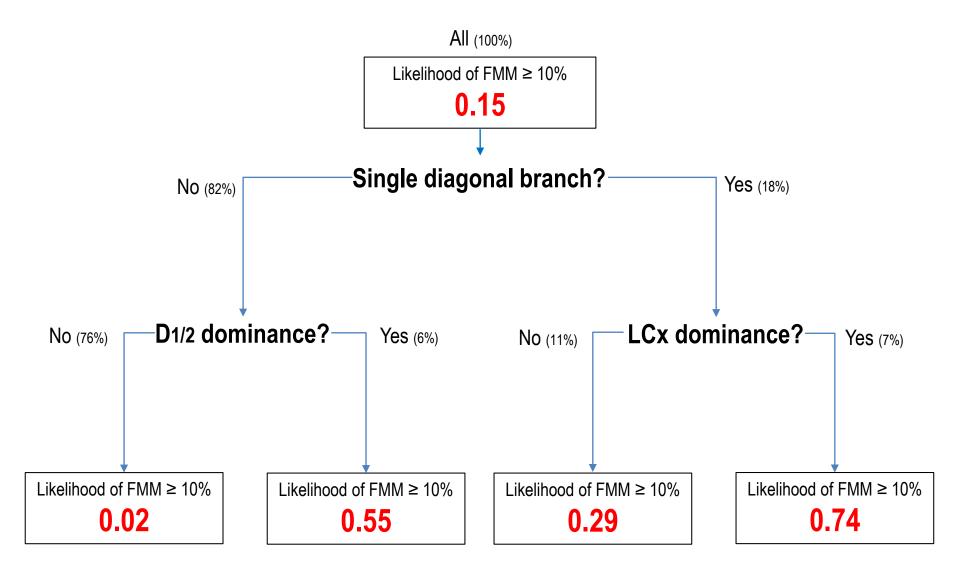
% ischemia: 11%





% ischemia: 10%

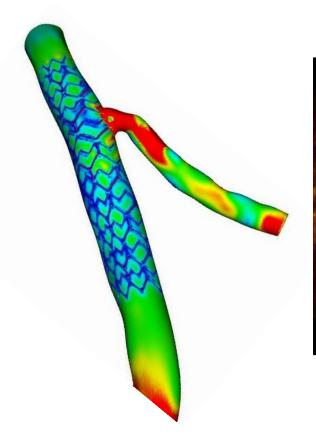


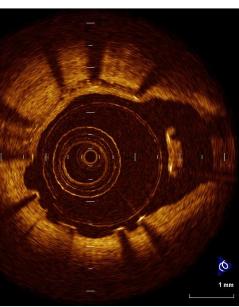
% ischemia: 12%









Jeon WK, Koo BK, et al. Eurointervention, In press


#### **Decision Tree for % FMM ≥ 10%**



## Are you (un)happy with this?

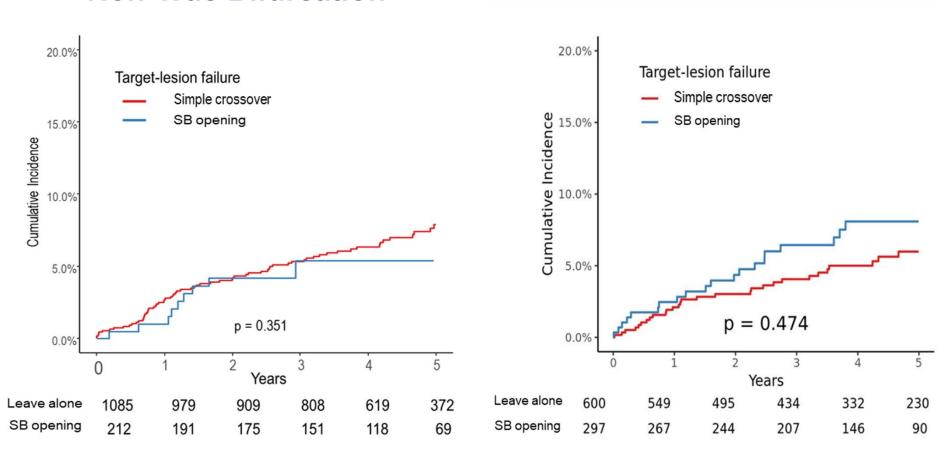






**OCT: 18 mo after Cypher** 

Courtesy of Dr Otake


Koo BK, LaDisa J, 2009



# COBIS III Registry Clinical relevance of SB opening

#### **Non-True Bifurcation**

#### **True Bifurcation**



## What makes the difference?

## Device? Concept? Technique?

- Safer access: More trans-radial approach
- Better stents and better stenting technique
- Better PCI technique: Better kissing, NC balloon, POT
- Better concept: imaging guidance, SB relevance
- Better risk stratification: SB occlusion, risk stratification

#### **COBIS II Registry**

#### How to avoid SB compromise after MV stenting?

- How to protect SB?
  - Jailed wire technique
  - SB predilation
  - Optimal stent sizing, ......

#### Predictors of SB occlusion from COBIS II

| Variables                  | OR [95% CI]     | p Value |
|----------------------------|-----------------|---------|
| SB DS ≥50%                 | 2.3 [1.59-3.43] | <0.001  |
| SB lesion length (by 1 mm) | 1.0[1.003-1.06] | <0.001  |
| Proximal MV DS ≥50%        | 2.3 [1.57-3.50] | 0.03    |
| Acute coronary syndrome    | 1.5 [1.06-2.19] | 0.02    |
| Left main lesions          | 0.3 [0.16-0.72] | 0.005   |



#### **Korean Bifurcation Pooled Cohorts**

## **Predictors of TVF in 2-stent strategy**

Treated with 2-stent strategy: N=951

|                           | Adjusted HR* | 95% CI      | p Value |
|---------------------------|--------------|-------------|---------|
| Treated bifurcation in LM | 2.09         | 1.43 – 3.03 | <0.001  |
| High SYNTAX score >32     | 2.00         | 1.28 – 3.14 | 0.002   |
| Diabetes mellitus         | 1.41         | 1.00 – 1.99 | 0.05    |
| Second-generation DES     | 0.26         | 0.12 - 0.57 | 0.001   |
| Non-compliant balloon     | 0.53         | 0.36 - 0.79 | 0.002   |
| Final kissing ballooning  | 0.44         | 0.29 - 0.68 | <0.001  |

<sup>\*</sup>Adjusted for age (continuous), acute coronary syndrome as presentation, preprocedural hemoglobin level, pre-procedural creatinine level, bifurcation angle (continuous), multi-vessel coronary disease, transradial approach, intravascular ultrasound, provisional approach, stenting techniques, total stent length in side branch (continuous).



## Conclusion

- COBIS registry started with bifurcation PCI patients since 2004 are still ongoing with dedicated QCA core laboratory/CRO, independent statistical analysis team and event adjudication committee.
- Results of COBIS studies expanded our knowledge on bifurcation treatment and improved the patients' clinical outcomes.
- Ongoing COBIS III study will provide more insights on coronary bifurcation lesions and their treatment.