LM stenting: diameters, prevention of SB occlusion, and stent choice

Yves louvard, ICPS Massy, Générale de Santé Ramsay, France

(C) Institut Cardigvasculaire paris Sud

No conflict of interest to declare
() Institut cardigvasculaire paris Sud

Benoit Mandelbrot (1924-2010): fractals

(O) Institut Cardigvasculaire paris Sud

Structure-function scaling laws of vascular trees

$$
\begin{aligned}
& \text { Murray's law } \\
& \mathrm{D}_{1}{ }^{3}=\mathrm{D}_{2}{ }^{3}+\mathrm{D}_{3}{ }^{3}
\end{aligned}
$$

Finet's law
$D_{1}=0.67\left(D_{2}+D 3\right)$

	0.01	0.1
N		
Normalized Myocardial Mass		

Normalized Myocardial Mass

(D) Institut Cardigvasculaire Paris Sud

Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries

(O) Institut cardigvasculaire paris Sud

Low wall shear stress and atheroma in bifurcation

(C) Institut Cardigvasculaire paris Sud

Pathological Findings at Bifurcation Lesions: Impact of Flow Distribution on Atherosclerosis and Arterial Healing After Stent Implantation

	DES (12 Lesbons, 17 Stents)		pVave	BMS (14 Lestons, 18 Stentis)		p Value	p Value for DES vs. BMS	
	Flow Onder	Lateral		Flow Olvider	Lateral		Flow Owder	Lateral
Neoinitimal thickness (mm)	0.07(0.03-0.15)	0.17(0.09-0.23)	0.001	0.26 (0.16-0.73)	0.44 (0.17-0.67)	0.25	0.0002	0.004
Fibin depsosition (\% stutis)	60(21-67)	17(0-55)	0.01	8(0-33)	$3(0-21)$	0.21	0.008	0.19
Uncovered stuts (\% stuts)	40(16-76)	$0(0-15)$	0.001	$010-21)$	$0(0-0)$	0.10	0.004	0.38

(0) Institut CaRDIロVASCULAIRE PARIS SUD

Local flow conditions in jailed SB lesions using computational fluid dynamics

Area of low WSS (<4 Pa) in 8-computational bifurcation models (post treatment ?)

C $24,8 \%$

F 8.6\%

Distal LM stenosis is a bifurcation stenosis

- Same branching laws
- Same distribution of plaques (opposite to the carena)

But:

- Big bifurcation
- Take off from the aorta
- Larger B angle
- Bigger myocardial mass at risk (MMAR)
- Technically more difficult ?: No ! But not forgiving mistakes

LM IVUS: A Large Vessel Underestimated by Angio and Poorly Predicted by Patient Physical Parameters

IVUS and Angiographic blinded evaluation of the LMCA in 82 consecutive pts (age, 62 ± 7; 59 men)

	Angiography	IVUS	p
LM size (mm)	4.01 ± 0.52	4.90 ± 0.51	<0.01

BSA, Age, gender (4.93 ± 0.6 vs 4.88 ± 0.49), height, weight, or ideal body weight did not predict LM size

INSTITUT CARDIロVASCULAIRE PARIS SUD

EuroIntervention. 2010 Jan;5(6):709-15.

Diffuse atherosclerotic left main coronary artery disease unmasked by fractal geometric law applied to quantitative coronary angiography: an angiographic and intravascular ultrasound study.

Motreff P ${ }^{1}$, Rioufol G, Gilard M, Caussin C, Ouchchane L. Soutevrand G, Finet G.

\oplus Author information

Abstract

AIMS: Angiographic analysis of left main coronary artery (LMCA) stenosis can be hindered by the lack of any reference segment when the LMCA is short or there is diffuse atheroma. Fractal geometric law (FGL) enables the theoretic diameter of one bifurcation vessel to be calculated from those of the other two (Dmother $=0.678^{*}$ (Ddaughter1+Ddaughter2). Applied to the LMCA, the FGL can help the quantification of stenoses.

METHODS AND RESULTS: Fifty-two patients with angiographically mild focal LMCA disease ($n=14$) or normal to nearly normal LMCA ($n=38$) who had undergone intravascular ultrasound (IVUS) were included. IVUS analysis confirmed all 14 focal stenoses (group C); of the 38 angiographically normal patients, however, 10 were found to present diffuse LMCA disease (group B), the remaining 28 showing a truly healthy LMCA (group A). LMCA stenosis in groups A,B and C was respectively $3 \%, 4 \%$ and 42% on usual quantitative coronary angiography (QCA) and $5 \%, 31 \%$ and 43% on QCAfractal applying the FGL. In cases of diffuse atheroma, the FGL corrected the underestimation of LMCA diameter, which averaged 1.2 mm . conclusions: Angiographic underestimation of LMCA stenosis can be corrected by applying the FGL to obtain a theoretic LMCA diameter, thereby unmasking any diffuse atherosclerotic LMCA disease, or to quantify focal stenosis more precisely where the adjacent segments are also pathological.
(D) Institut Cardiavasculaire Paris sud

Measurement of Coronary Artery Bifurcation Angles by Multidetector Computed Tomography

(D) Institut CARDIロVASCULAIRE PARIS SUD

High risk
(O) Institut Cardigvasculaire paris Sud

High risk ? = No

Risk assessment

3 VD ?
Occluded RCA (dominant?)
Dominant LCA ?
Collaterals ? LCA to RCA / RCA to LCA
LVEF ?
Lesion complexity (handling time) ?
Syntax score II, Euroscore
PCI/CABG ?, hemodynamic support?

O Institut Cardigvasculaire Paris Sud

LM longitudinal stent distorsion: guiding / stent proximity

(C) Institut Cardigvasculaire paris Sud

LM longitudinal stent distorsion: guiding / stent proximity

LM longitudinal stent distorsion: guiding / stent proximity

- Stent Viz (General Electrics) evidenced a shortening of the stent with a disrupted portion in its proximal edge.
(C) Institut Cardiavasculaire Paris sud

LM longitudinal stent distorsion: guiding / stent proximity

(D) Institut Cardigvasculaire paris Sud

Avoid SB occlusion

(0) Institut cardiavasculaire paris sud

Predictors and outcomes of SB occlusion after main vessel stenting in coronary bifurcation lesions

Clinical Outcomes at 12-Month Follow-Up

Oitconne	$\begin{aligned} & \text { SB Ocalisison } \\ & (n=187) \end{aligned}$	$\begin{aligned} & \text { No SB Occlusion } \\ & (n=2,040) \end{aligned}$	Unaduluted h R (95\% Cl\|	pallue	Aflutel HP: (955 C C 1)	p Value	
Death	10(5.3)	74 (3.6)	1.55 088-299)	0.20	1.50 (0.76-2.97)	0.24	
Cariacdeath	73.7	201.00	3.95 (167-9.95)	0.002	4.19 (166-10.59)	0.02	
\|	1	$4(2.1)$	32 (16)	144 (0.59-4,07)	0.49	1.50 (0.51-4.41)	0.46
Cariacdeatho I II	10(5.3)	50 (2.5)	$229(116-4,52)$	0.02	$23.34(1.15-4.7)$	0.02	
Stert thromososis'	6 63.2)	90.41	7.68 (273-2159)	<0.001	6.19 (200-191.13)	0.002	
TIR	$14(7.5)$	129 (6.3)	1260 (0.73-219)	0.41	1310 (0.7-2:30)	0.36	
MACE	[23 (123)	$16418.0)$	1.63 (106-2.53)	0.03	1.64 (1.05-2.58)	0.03	

(C) Institut CARDIロVASCULAIRE PARIS SUD

Predictors and Outcomes of SB Occlusion After Main Vessel Stenting in Coronary Bifurcation Lesions Results From the COBIS II Registry

Lesion and Procedural Characteristics

Characteristic	SB Occlusion ($\mathrm{n}=187$)	No SB Occlusion $(n=2,040)$	p Value
Bifurcation location			<0.001
Left main bifurcation	14 (7.5)	556 (27.3)	
LAD/diagonal	124 (66.3)	1,124 (55.1)	
LCX/OM	32 (17.1)	272 (13.3)	
RCA bifurcation	17 (9.1)	88 (4.3)	
Medina classification $1.1 .1$	97 (51.9)	567 (27.8)	<0.001

Patients with recovery of the occluded SB had jailed wire in the SB more frequently than those without recovery of the occluded SB (74.8\% vs. 57.8\%, p < 0.02)

SB occlusion
wo JW = 7\%
w JW = 9\%

True bifurcation	139 (74.3)	901 (44.2)	<0.001
Type of stent used Sirolimus-eluting stent	82 (43.9)	966 (47.4)	0.83
Paclitaxel-eluting stent	50 (26.7)	545 (26.7)	
zotarolimus eluting stent	23 (12.3)	234 (11.5)	
Everolimuseluting stent	26 (13.9)	246 (12.1)	
Other drug-eluting	6 (3.2)	49 (2.4)	
dailed wire in the $S B$	123 (65.8)	1,237 (60.6)	0.17
SB pre-anation before MV stenting	61 (32.6)	435 (21.4)	<0.001
Guidance of intravascular ultrasound	$52(27.8)$	772 (37.8)	0.007
MV stent diameter, mm (range)	3.0 (3.0-3.5)	3.0 (3.0-3.5)	0.04
MV stent length, mm (range)	24.0 (20.0-30.0)	24.0 (18.0-30.0)	0.21
MV stent maximal pressure, atm (range)	12.0 (10.0-14.0)	14.0 (10.0-16.0)	<0.001
MV stent/artery ratio (range)	1.2 (1.1-1.3)	1.2 (1.1-1.3)	0.63

(O) Institut CARDIロVASCULAIRE PARIS SUD

Independant predictors of SB occlusion

Variable	Odds Ratio (95\% CI) (range)	p Value
Pre-procedural \%DS of the $\mathrm{SB} \geq 50 \%$	$2.34(1.59-3.43)$	<0.001
Pre-procedural \%DS of the	$2.34(1.57-3.50)$	0.03
\quad proximal MV $\geq 50 \%$		
SB lesion length	$1.03(1.003-1.06)$	<0.001
Acute coronary syndrome	$1.53(1.06-2.19)$	0.02
Left main lesions	$0.34(0.16-0.72)$	0.005
\quad (vs. non-eft main lesions)		

(D) Institut Cardigvasculaire paris Sud

IVUS findings of Carina shift vs. Plaque shift

Angiogram Cross-sectional IVUS Longitudinal IVUS
Both plaque shift and carina shift \rightarrow Aggravation of SB luminal narrowing after MB stent implantation

Pre-intervention

After stenting
Koo, Circ Cardiovasc Interv 2010;3;113-119
(C) Institut Cardigvasculaire Paris Sud

Stent diameter

Optimal
 Provisional SB

Stenting
(O) Institut cardigvasculaire paris Sud

Stent diameter

POT
(1) Institut CaRDIロVASCULAIRE PARIS SUD

Left Main Stenting Acute Result, 6 Month CTCA

(D) Institut Cardigvasculaire paris Sud

One stent, two diameters ... but which ones?

(D) Institut Cardigvasculaire paris Sud

Arterial remodeling and CAD: the concept of "dilated" vs "obstructive" coronary atherosclerosis

Progression

EEM expansion Lumen shrinkage EEM shrinkage

Regression?

Early plaque accumulation in human coronary arteries is associated with compensatory enlargement of vessel size (positive remodeling). Therefore, luminal size is initially not affected by plaque growth. These complex changes of lumen, plaque and external elastic membrane (EEM) may also affect plaque regression.
(C) Institut Cardigvasculaire paris Sud

Positive remodeling and vessel diameter

(C) Institut Cardigvasculaire Paris Sud

Positive remodeling and vessel diameter

(C) Institut Cardigvasculaire paris Sud

Positive remodeling and vessel diameter

(D) Institut cardiavasculaire Paris sud

OCT compared with IVUS in a coronary lesion assessment The OPUS-CLASS study

MLA in Phantom Models: FD-OCT / IVUS

MLD in patients: FD-OCT, IVUS, and QCA

(C) Institut Cardigvasculaire Paris Sud

Usefulness of the Finet law to guide stent size selection in ostial LM stenting: Comparison with standard angiographic estimation

DES Designs Overexpansion

Balloon Max Size						
	Synergy	Xpedition	Res. Onyx	Ultimaster	BioMatrix A	Orsiro
4.0	Small vessel (8 crowns, 2-4 connectors) Expansion: 3.6 mm	Small vessel (6 crowns, 3 connectors) Expansion: 4.1 mm	Small vessel workhorse (6.5 crowns, 2 connectors) Expan: 3.3 mm	Small vessel (8 crowns, 2 connectors) Expansion: 4.3 mm	Small vessel (6 crowns, 2 connectors) Expansion: 4.1 mm	Small vessel (6 crowns, 3 connectors) Expansion: 4.0 mm
$5.0\left\{\begin{array}{l}2.75 \\ 3.00\end{array}\right.$	Workhorse (8 crowns, 2-4 connectors) Expansion:		Medium vessel workhorse (8.5 crowns, 2 connectors) Expansion: 4.4 mm			
5.0	4.2 mm	Large vessel (9 crowns, 3 connectors) Expansion: 5.6 mm	Large vessel (9.5 crowns, 2.5 connectors) Expansion:	Large vessel (8 crowns, 2 connectors) Expansion: 5.8 mm uding struts	Large vessel (9 crowns, 3 connectors) Expansion: 5.9 mm	$\begin{aligned} & \text { Large vessel (} 6 \\ & \text { crowns, } 3 \\ & \text { connectors) } \\ & \text { Expansion: } \\ & 5.3 \mathrm{~mm} \end{aligned}$
	Large vessel (10 crowns, 2-5 connectors) Exp: 5.7 mm		5.6 mm			
6.0			Extra-Large vessel (10.5 crowns, 2.5 connectors) Expansion: 6.0 mm			
		> Expansion:	ner stent MLD exc			
		> Max balloo	size : Maverick 6.0	mm at 14 ATM		Foin, Ng, 2016

www.icps.com.fr
(D) Institut Cardigvasculaire paris Sud

A « $S B$ » occlusion...

(O) Institut Cardigvasculaire paris Sud

Female patient, 70 yo

Live in Euro-PCR
(V) Institut Cardigvasculaire paris Sud

Runthrough ns X 2, Trek 2.5X20

(O) Institut Cardigvasculaire Paris Sud

Synergy 3X24

(O) Institut Cardigvasculaire Paris Sud

Cx occlusion

(D) Institut Cardigvasculaire Paris Sud

POT 3.5X10

(C) Institut Cardigvasculaire Paris Sud

Cx wire failure: Fielder FC, Asahi medium,

(D) Institut Cardigvasculaire paris Sud

Finecross + Fielder XT-A

(D) institut Cardigvasculaire Paris Sud

Result

(V) Institut Cardigvasculaire Paris Sud

(V) Institut Cardigvasculaire Paris Sud

(C) Institut Cardigvasculaire Paris Sud

Conclusions (1)

- Coronary trees have « pseudo » fractal anatomy
- This anatomy has a distributive fonction in epicardic arteries
- In pathologic conditions it explain development of plaques opposite to the carena
- But this anatomy remains the most effective and has to be respected by treatment
- Particularly important in LM stenting regarding the lethal risk
(D) Institut CARDIロVASCULAIRE PARIS SUD

Conclusions (2)

- Respect the anatomy but how to choose the stent diameters ?
- IVUS is oversizing and QCA undersizing the luminal diameter
- Media to media diameter choice is a provider of SB occlusion?
- After diameter choice, stent choice using independant maximal expansion measurements is important
- We need bench evaluation of stents in severe curves

