Experience of snuffbox approach for complex PCI

Jun-Won Lee

Wonju Severance Christian Hospital Yonsei University Wonju College of Medicine

Concerns for successful CHIP

Anatomical Snuffbox

https://www.earthslab.com/anatomy/anatomical-snuffbox/

Anatomical Snuffbox

Nardai S, et al. Eurointervention 2019 doi:10.4244/EIJ-D-19.00023.

Available puncture site

Vascular access

Recommendation	Class	Level
2017 ESC STEMI guideline		
Radial access is recommended over femoral access if performed by experience radial operator.	I	A
2018 ESC guideline on myocardial revascularization		
Radial access is recommended as the standard approach, unless there are overriding procedural considerations.		A

European Heart Journal 2018;39:119-177 European Heart Journal 2019;40:87-165

Distal radial access: lack of evidence

Randomized studies	Non randomized studies Case reports			
1. Koutouzis et al. 2018 (200 pts)	 Kiemeneij. 2017 (70 pts) Roghani-Dehkordi et al. 2018 (235 pts) Lee et al. LeDRA study. 2018 (200 pts) Kim et al. 2018 (150 pts) Coughlan et al. 2018 (94 pts) Soydan et al. 2018 (54 pts) Valsecchi et al. 2018 (52 pts) Ziakas et al. 2018 (49 pts) Gasparini et al. 2018 (41 CTO pts) Al-Azizi et al. (22 pts) 	 Kontopodis et al. 2018 Latsios et al. 2018 Pua et al. 2018 Kim et al. 2018 Berezhnoi et al. 2018 Sheikh et al. 2018 Shejkh et al. 2018 Bayam et al. 2018 		

Real-world experience of the left distal transradial approach for coronary angiography and percutaneous coronary intervention: a prospective observational study (LeDRA)

Jun-Won Lee, MD; Sang Wook Park, MD; Jung-Woo Son, MD; Sung-Gyun Ahn, MD, PhD; Seung-Hwan Lee*, MD, PhD

Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea

Primary endpoints			At admission		15/191 (7.9)	
CAG success		187/187 (100) BARC bleeding type 2, 3, 5		, 5	0 (0)	
PCI success		86/87 (98.9)	Minor haematoma		14 (7.4)	
Secondary endpoints			Haematoma grade <2 cm		10 (5.2)	
Puncture success		191/200 (95.5)		2-5 cm	1 (0.5)	
Crossover		9 (4.5)		>5 cm	3 (1.6)	
		7 (3 5)	Distal radial artery occlusion		0 (0)	
		7 (5.5)	Perforation		0 (0)	
Right distal radial		2 (1)	Pseudoaneurysm		0 (0)	
Clinical diagnosis	Clinical diagnosis Stable angina		Dissection		1 (0.5)	
Unstable angina NSTEMI STEMI Others		74 (37)	Arteriovenous fistula		0 (0)	
		45 (22.5)	1-month follow-up by ultrasonography		2/141 (1.4)	
		17 (8.5)	Distal radial artery occlus	0 (0)		
		26 (13)	Neuropathy	2 (1.4)		

Jun-Won Lee, et al. Eurointervention 2018;14:e995-e1003

PCI for lesion complexity

Patients who underwent PCI (n=87)					
PCI performed		87/191 (45.5)			
Ad hoc	Ad hoc				
Staged	Staged				
Culprit lesion	Left main	6 (6.9)			
	Left anterior descending	47 (54)			
	Left circumflex	6 (6.9)			
	Right coronary artery	28 (32.2)			
Bifurcation		28 (32.2)			
In-stent restenosis		9 (10.3)			
Chronic total occlusion		8 (9.8)			
Guiding catheter	5 Fr	5 (5.7)			
	Sheathless 6.5 Fr	19 (21.8)			
	6 Fr	62 (71.3)			
	7 5r	1 (1 1)			
	7 FT	1 (1.1)			

Case 1 : MVD with heavy calcification

- 92 year-old / Male
- Underlying A-fib, hypertension
- Dyspnea on exertion
- Echo: LVEF 48%, Akinesia on LAD territory

RCA

diffuse narrowing, calcification, recanalized thrombus

LAD, LCX: diffuse, calcified lesion

Strategy

- CABG recommendation: Patient refused
- He visited other hospital for **second opinion** and waited for scheduled PCI 2 weeks later.
- Patient visited out-patient clinic again because of aggravated dyspnea.
- He wanted to perform PCI in our hospital.
- Comorbidities: old age, fragile, A-fib, Hypertension
- Hemodynamics: LVEF 48%
- Complex anatomy: multivessel disease, heavy calcification.
- ICU preparation
- Ready for emergent situations: intubation, IABP, Rotablation atherectomy
- Both femoral areas were disinfected, then...

Distal radial approach (6Fr sheath)

LAD PCI (6Fr XB 3.5)

LCX PCI

Stent passing failure (buddy wire)

Extension Guiding catheter ? Shorter & upgraded stent ?

Final angiography

Case 2. Lt main bifurcation

- 79 year-old male
- Risk factors: Hypertension, Diabetes, Ex-smoker
- Jan 2009: PAOD (Right femoro-popliteal thrombotic occlusion: thrombectomy)
- Feb 2016: CAOD 2-VD (medical treatment), PTA at Rt. CFA, mid-SFA with stent
- Feb 2017: Complete heart block \rightarrow DDD permanent pacemaker
- Feb 2017: Total occlusion at right internal carotid artery
- Jan 2018: Chest pain, dyspnea aggravation

Left distal radial approach

RCA

LAD

LCX

IVUS finding (LAD)

IVUS finding (LCX)

LAD PCI (6Fr XB 3.0)

Provisional T-stent strategy

IVUS finding (Bifurcation)

Final angiography

Case 3. mLAD calcified CTO → Rotablation atherectomy

- 64 year-old male
- CC: chest pain during walking (aggravated during 1 week)
- CT from referred hospital: Multiple coronary calcification
- Risk factors: Hypertension, DM, Old CVA, Dyslipidemia
- Current smoker: 20 pack x years
- Alcohol: Daily Soju 1 bottle
- Echo: LVEF 67%, No regional wall motion abnormality

DRA angiography

RCA

LAD

Lt main & LCX

Problem

- 1. Culprit segment for symptom: LAD ostium
- 2. Huddle: mLAD CTO
- 3. Consider CTO strategy
 - a. mLAD lesion morphology: heavily calcified
 - b. mLAD CTO proximal: microchannel (maybe)
 - c. Retrograde option: Big ramus, Septal branch (distal CTO cap)

Guiding catheter (6Fr XB 3.5)

Change to soft wire: Fielder XT-A

Wire escalation (GAIA first) for targeting distal CTO cap

Puncture distal CTO cap with GAIA first

(impossible microcatheter advancement)

Microcatheter passing

Balloon passing failure

Guiding extension guiding catheter

Try smaller balloon again

Plaque modification (Rotablator 1.25mm)

Balloon predilation 2.0/15mm

Deployment of 3 DESs

Adjuvant NC balloon

IVUS evaluation (underexpansion)

Final angiography

Case 4. RCA STEMI

- 80 year-old male
- Killip 4, Complete heart block
- Trans-cutaneous patch apply
- C-line, Endotracheal intubation, IV dopamine

Temporary pacemaker insertion (Right femoral vein)

Left distal radial artery puncture

Double CTO? → Which is the culprit?

Ambiguous LAD stump

RCA: tapered stump (6Fr JR 4.0)

Checking proximal cap (Drilling with soft guide-wire: Sion blue)

Wait after reperfusion

RCA PCI

Size does matter

Jun-Won Lee, et al. Eurointervention 2018;14:e995-e1003

Be familiar with Sheathless GC

	6Fr Guiding System	6.5Fr SheathLess	7.5Fr SheathLess	
O.D. (mm)	2.50~2.70	2.16	2.49	
I.D. (mm /inch)	1.78	1.78	2.06	
Deep Seating	Not applicable shaft stiffness	Applicable	Not applicable shaft stiffness	
Kissing Balloon Technique	Applicable (Balloon catheter smaller than 2.6Fr)	Applicable (Balloon catheter smaller than 2.6Fr)	Applicable	
Cutting Balloon	~3.50mm	~3.50mm	~4.00mm	
Rotablator	~1.75mm	~1.75mm	~2.00mm	

Sheathless guiding catheter

			Guiding catheter							
			5Fr 6Fr			7Fr		8Fr		
Device combination / ID		058″	070″	071″	072″	078″	081″	088″	090″	
Finecross	014 wire	048″	0	0	0	0	0	0	0	0
Corsair	014 wire	050″	0	0	0	0	0	0	0	0
Crusade	014 wire	056″	0	0	0	0	0	0	0	0
Finecross	Finecross	068″	Х	0	0	0	0	0	0	0
Corsair	Finecross	070″	Х	Х	0	0	0	0	0	0
Corsair	Corsair	072″	Х	Х	Х	Х	0	0	0	0
Finecross	Balloon	068″	Х	0	0	0	0	0	0	0
Corsair	Balloon	070″	Х	Х	0	0	0	0	0	0
Crusade	Balloon	076″	Х	Х	Х	Х	0	0	0	0
5Fr IVUS	014 wire		Х	0	0	0	0	0	0	0
6Fr IVUS	014 wire		Х	0	0	0	0	0	0	0
5Fr IVUS	Finecross		Х	Х	Х	Х	0	0	0	0
6Fr IVUS	Finecross		Х	Х	Х	Х	Х	0	0	0
Crusade	Finecross		Х	Х	Х	Х	0	0	0	0
5Fr IVUS	Corsair		Х	Х	Х	Х	0	0	0	0
6Fr IVUS	Corsair		Х	Х	Х	Х	Х	Х	0	0
Crusade	Corsair		Х	Х	Х	Х	Х	0	0	0

심혈관중재매뉴얼 Chap.28 표1

Potential benefit of distal radial approach (Hypoplastic ulnar artery)

Summary

- 1. Distal radial approach for complex PCI could be feasible and safe, if performed experienced operator.
- 2. After learning curve, you can have **one more route**.
- 3. There is **no limitation** to use distal radial artery **for complex PCI**, **if you have every answers** for the expected situations.
- 4. Slender system (Sheathless, Glide sheath slender) is good option for small distal radial artery.
- 5. Finally, DRA will follow the **same way of radial approach.**