Complex high-risk Interventional Procedure

Joint meeting of Cardiovascular Intervention and Revascularization **2019** Seung-Ho Hur, MD, PhD, FACC Keimyung University Dongsan Hospital Daegu, Republic of Korea

Complex PCI

Clinical Research in Cardiology 2018

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

1. evaluation of plaque composition and plaque location

- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

1. evaluation of plaque composition and plaque location

- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Case 2: 'Aggressive' IVUS Method for Stent Sizing in LAD Bif

Case 2: Two stents with crushing technique

LAD true

Final CAG

Case 3: Simple Crossover Stenting in LM Dz

Discrepancy between IVUS and Coronary angiogram

• LCXos & LADprox. lesion - 75 yo / ♀, sAP

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Suggested Stent Expansion Criteria

• 59 yo / O

- risk factors: HTN (+), HL (+)
- syntax score: 27
- stable anigna

Case 4

2 stents strategy

Crushing Stenting

EES 3.0*18mm 16 atm for <u>LM to LCX</u>

EES <u>3.5</u>*18mm 12atm for <u>LM to LAD</u>

KB inflation 3.5mm for LAD, 16 atm 2.5mm for LCX, 16 atm

Final IVUS Pullback of LAD after KBI

Final IVUS Pullback of LCX after KBI

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Case 5: IVUS-guided CTO Intervention

- 51 yo / Q
- risk factors: HTN (+), DM (+), HL (+)
- <u>stable anigna</u>

Kang SY... Hur SH. Korean Circ J 2010;40:596-600

Case 5

Wire escalation and parallel wire technique

OTW with PT II \rightarrow Miracle 3g \rightarrow 6g \rightarrow 12g Parallel wire technique (Miracle 12g & Conquest Pro)

Kang SY... Hur SH. Korean Circ J 2010;40:596-600

Case 5

Successful rewiring and predilatation followed by IVUS examination

Kang SY... Hur SH. Korean Circ J 2010;40:596-600

Final CAG

Overlapping stents implantation followed by SB POBA

Kang SY... Hur SH. Korean Circ J 2010;40:596-600

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Case 6: IVUS Role in Severe Calcified Lesion

• 81 yo / Q • uAP+Severe AS+Atrial flutter+ NSCLC

• CABG (LIMA to LAD, tRA-OM3-RCA) • Echo:EF 28%, global wall motion abnormality

- native mLAD
 - : angulated lesion w/ severe calcification

- Rota GW insertion using GW escalation with microcatheter
- Rotational atherectomy under ECMO support (1.25 to 1.5 mm burr)

Case 6

NC balloon inflation followed by IVUS Examination

Lumen Mean D. 3.54mm Min D. 2.91mm / Max D. 4.08mm Vessel Mean D. 5.20mm Min D. 5.07mm / Max D. 5.36mm LA 2.05mm² Min D. 1.47mm / Max D. 1.80mm VA 11.54mm² Min D. 3.58mm / Max D. 4.05mm Plaque 82.2% of vessel

0

C. Dist. reference

Case 6

2 DESs Implantation and Final CAG

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Case 7: Accidental Abluminal Rewiring during KBI

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

OCT vs. IVUS

	C7-XR	IVUS	
Axial Resolution	15 – 20 µm	100 – 200 μm	
Higher resolution is almost 10 times more Imaging core size is a half of that in IVUS Max. Scan Dia. 10 mm 15 mm			
Scan area is smaller and penetration depth is more shallow			
Lateral Sampling (3 mm Artery)	19 µm	225 µm	
Blood Clearing	Required	Not Required	

Case 8: OCT Role in LM ISR Lesion

• 64 yo / **Q** • <u>**NSTEMI</u>** • RF: DM (+), HL (+), SM (+) • Echo: 41%, ant wall hyokinesia</u>

Comparison of 14M FU CAG vs. Final CAG

Final CAG @ index procedure

FU CAG @ 14 months dt SPECT (+)

• LMd to LADp: ISR type Ib • LCX lesion: progression

• 14M FU SPECT: mild to mod. reversible perfusion defect in the apex, anterior and lateral wall

OCT Findings of LM-LAD ISR Lesion

A. MLA (LAD os)

B. POC

C. LM distal

D. prox. stent edge **E.** prox. ref. (LM)

SA 5.03mm² min/max D. 2.33/2.72mm LA 1.81mm² min/max D. 1.34 /1.69mm %NIH 64.0%

SA 4.52mm² min/max D. 2.09/2.63mm LA 2.22mm² min/max D. 1.51/1.80mm %NIH 50.9%

SA 6.61mm² min/max D. 2.58/3.18mm LA 7.47mm² min/max D. 2.56/3.56mm ISA depth 400 µm

LA 10.23mm² min/max D. 2.98/3.93mm

distal

proximal

OCT Findings of LM-LCX De novo Lesion

A. MLA (LCX os) B. POC

C. LM distal

D. prox. stent edge **E.** prox. reference

Case 8

LA 2.26mm² min/max D. 1.61/1.78mm

SA 2.89mm² min/max D. 1.53/2.31mm LA 1.65mm² min/max D. 1.13/1.86mm %NIH 42.9%

SA 5.56mm² min/max D. 2.41/2.84mm LA 6.24mm² min/max D. 2.36/3.17mm

LA 9.96mm² min/max D. 2.89/3.89mm

proximal

Case 8

Scoring Balloon Angioplasty followed by Drug-Coating Balloon Angioplasty for LM-LAD ISR

OCT-guided POBA for the Treatment of ISR

- OCT was a useful method for identifying the plaque tissue after DES implantation.
- Plaque with heterogeneous or lipidladen pattern has good response to POBA, but that with homogeneous or two layered pattern has poor response.

MLA (LAD os) SA 5.03mm² min/max D. 2.33/272mm LA 1.81mm² min/max D. 1.34/1.69mm %NIH 64.0%

Score Flex Balloon

Features

- Semi-Compliant
- 2.0mm 4.0mm Diameters available
- Crossing profile 0.030" (3.0mm balloon)
- 10mm 20mm Lengths available
- Guide wire exit port 11mm from distal tip
- 0.011" Nitinol integral wire with dual radiopaque markers
- X-Flex tip
- 139cm Shaft length

DCB 3.5*20mm 16 atm 30 sec

OCT Findings Before and After Scoring Balloon and DCB Angioplasty

MLA (LAD os)

before

SA 5.03mm² LA 1.81mm² %NIH 64.0%

SA 7.87mm² LA 5.23mm² %NIH 33.5%

LM distal

SA 4.52mm² LA 2.22mm² %NIH 50.9%

SA 5.94mm² **LA** 5.08mm² **%NIH** 14.5%

before

before

Case 8

2 DES Implantation for LCX Lesion

- 1. evaluation of plaque composition and plaque location
- 2. decision of stent sizing and stent strategy (one or two)
- 3. assessment of stent expansion
- 4. evaluation of procedural complication
- 5. evaluation of effectiveness of rotablator
- 6. detection of suboptimal stent results, not seen by angio
- 7. assessment of ISR underlying mechanism
- 8. evaluation of recrossed SB wire location

Evaluation of Guidewire Position in the SB

3D Reconstructed Image of Implanted Nobori Stent at the Bifurcation

Nagoshi R, et al. JACC Intv 2016;11:e107-108

Case 9: OCT 3D **Navigation in Bifur. PCI**

- LAD / D1 bifurcation - Medina (1.1.1)
- 2 Stents: Crushing
 - Synergy 3.0*20mm and 3.0*16mm

KUDH case

Kissing Balloon Inflation

Imaging Devices for Complex PCI Enable...

- evaluation of plaque composition and location in LM and bifurcation lesion
- decision for stent sizing and one- or two-stent strategy in LM and bifurcation lesion
- detection of wire complication and evaluation of stent optimization in CTO and long lesion
- evaluation of effectiveness of rotablator in calcified lesion
- detection of suboptimal stent result, not seen by angio
- understanding of mechanisms (neointimal amount, characteristics and stent underexpansion) and decision for treatment strategy in ISR lesion
- evaluation of recrossed wire location and SB opening in bifurcation lesion

Impact of Intravascular Ultrasound-Guided Percutaneous Coronary Intervention on Long-Term Clinical Outcomes in Patients Undergoing Complex Procedures

Introvocaular

 6005 Patients who have a complex coronary artery lesion undergoing PCI with DES

 * Definition of complex lesions

 ① Bifurcation lesion with side branch ≥2.5mm size

 ② Chronic total occlusion (23 months) as target lesion

 ③ PCI for unprotected left main disease

 ④ Implanted stent length ≥38mm

Intravascular Ultrasound-Guided PCI (n=1674)

 Angiography-Guided PCI (n=4331)

TABLE 2 Lesion and Procedural Characteristics in Patients With Complex Coronary Artery Lesions Undergoing PCI According to Use of Intravascular Ultrasound

	intra vascutar		
	(n = 1,674)	(n = 4,331)	p Value
Lesion characteristics			
Number of vessel disease			< 0.001
1-vessel disease	501 (29.9)	1,110 (25.6)	
2-vessel disease	758 (45.3)	1,824 (42.1)	
3-vessel disease	415 (24.8)	1,397 (32.3)	
Multivessel disease	1,273 (70.1)	3,221 (74.4)	0.001
Lesion location (per vessel)			
LM	453 (27.1)	231 (5.3)	< 0.001
LAD	1,406 (84.0)	3,417 (78.9)	< 0.001
LCX	842 (50.3)	2,679 (61.9)	< 0.001
RCA	701 (41.9)	2,719 (62.8)	< 0.001
Number of lesion (per patient)	2.8 ± 1.6	2.9 ± 1.6	0.001
SYNTAX score	17.7 ± 9.4	16.9 ± 9.8	0.021
Pre-PCI diameter stenosis, %	83.9 ± 11.1	88.0 ± 10.0	< 0.001
Post-PCI diameter stenosis, %	3.8 ± 11.	8.7 ± 19.4	< 0.001
Total lesion length, mm	39.7 ± 28.0	37.1 ± 23.1	0.001
Procedural characteristics			
Angiographic success	1,650 (98.6)	4,123 (95.2)	< 0.001
Fluoroscopy time, min	25.1 ± 17.4	20.4 ± 15.2	< 0.001
Contrast volume, ml	235.4 ± 95.8	207.3 ± 80.9	< 0.001
Transradial approach	1,167 (69.7)	3,312 (76.5)	< 0.001
Type of stent	906 (491)	1002 (42.0)	0.004
First-generation drug-eluting scent	806 (48.1)	1,903 (45.9)	
Implanted stept number	19 + 10	2,428 (30.1)	<0.001
Mean stent diameter, mm	3.2 ± 0.4	30 ± 0.4	< 0.001
Minimal stent diameter \geq 3 mm	1.121 (67.0)	2.095 (48.4)	< 0.001
Total stent length, mm	46.2 ± 26.8	44.3 ± 24.4	0.014
Maximum balloon pressure, mm Hg	16.0 ± 3.1	14.8 ± 3.7	< 0.001
Adjunctive balloon dilatation	820 (49.0)	777 (17.9)	< 0.001
Timing of intravascular ultrasound use	1,674 (100)	0 (0)	< 0.001
Pre- and post-stent	1,314 (78.5)		
Pre-PCI only	120 (7.2)		
Post-stent only	240 (14.3)		

Clinical Outcomes

All Lesion	0.573 (0.460-0.714)
Bifurcation Lesion -	0.682 (0.498-0.934)
Chronic Total Occlusion Lesion	0.670 (0.408-1.102)
Left Main Disease —	0.203 (0.126-0.329)
Long Lesion	0.602 (0.450-0.804)
Multi-Vessel PCI -	0.639 (0.473-0.864)
Multiple Stents Implantation —	0.532 (0.332-0.855)
In-Stent Restenosis Lesion	0.837 (0.403-1.740)
Calcified Lesion	0.458 (0.052-4.012)
0.01 0.1 1	10
Stor Ultracend	Francis Annais
Favors Intravascular Ultrasound	Favors Angiography

Choi, K.H. et al. JACC Intv. 2019;12:607-20.

CONCLUSION

If you're walking down the right path... eventually you'll make progress

Barack Obama

Thank you for kind attention