

Historical Perspective of TRI

 1989: First published series of transradial coronary angiography
 (Campeau L. Cathet Cardiovasc Diagn 1989;16:3-7)

Dr. Lucien Campeau (1927-2010) Montreal Heart Institute

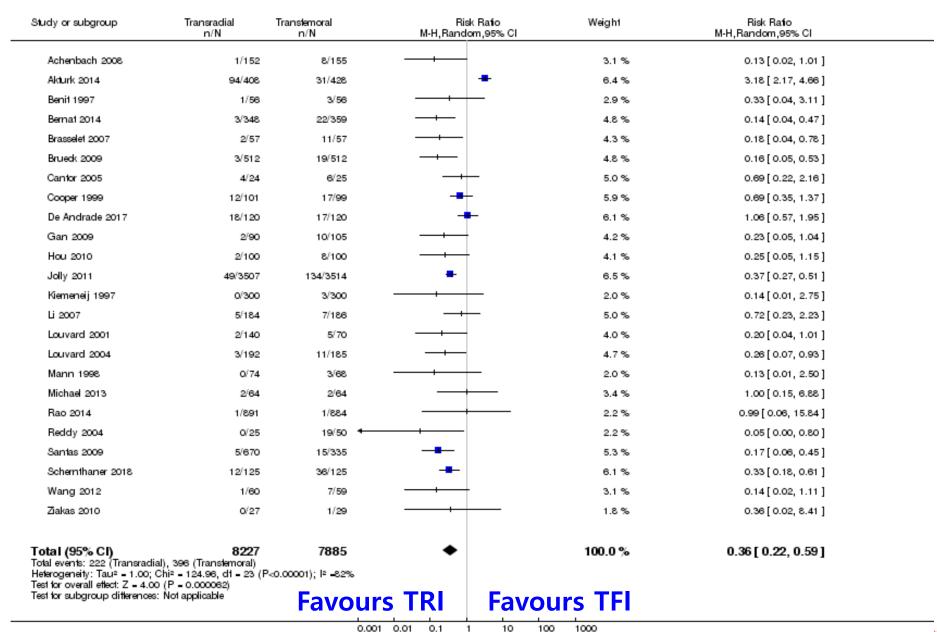
- 1992: First transradial coronary angioplasty
- 1993: First transradial coronary stenting

(Kiemeneij F, et al. Am Heart J 1995;129:1-7)

Dr. Ferdinand Kiemeneij) Amsteredam, Netherlands

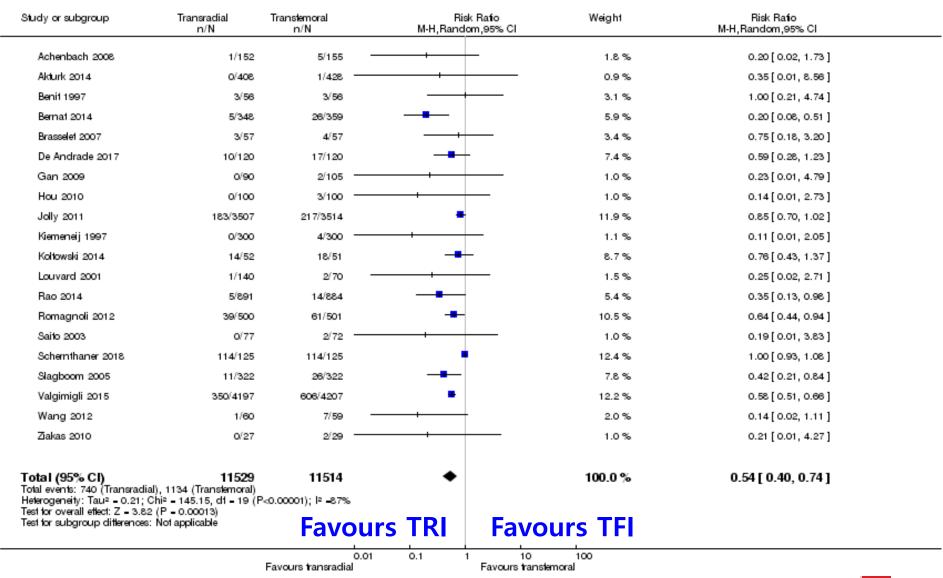
Campeau radial paradox

- With the increasing dominance of TRI for PCI, concerns have been expressed that as operators/centers become increasingly unfamiliar with TFI, outcomes in procedures where femoral access is necessary might become compromised.
- However, it is unclear from the existing literature whether this is a real-access—related effect or represents the impact of case mix on outcomes.



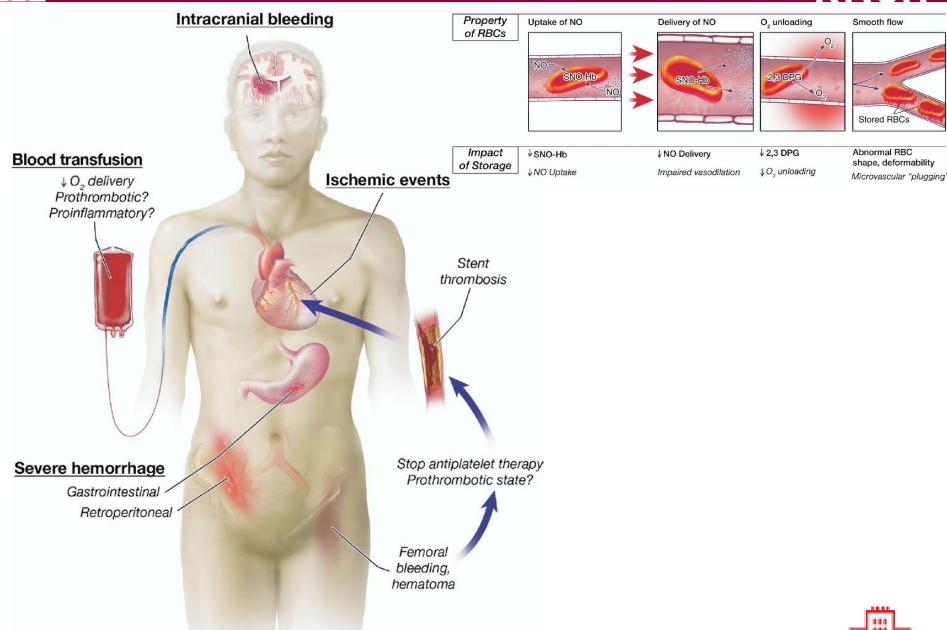
Meta-analysis: Access site complications

Favours transradial



Favours transfernoral

Meta-analysis: Bleeding



Doyle BJ et al. J Am Coll Cardiol 2009;53:2019-27

Possible Mechanisms Linking Post-PCI Bleeding With Increased Mortality

Studies of the impact of Major Bleeding on Mortality After PCI

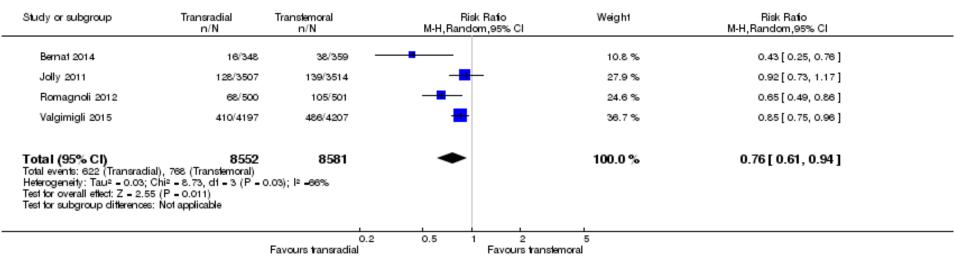
	N	Patient	Blood transfusion (%)	Impact of Bleeding on Mortality [95% CI]	P value
Kinnaird et al.	10,974	Unselected	5.4	30-day adjusted OR: 3.5 [1.9 - 6.7]	<0.001
REPLACE-2	6,001	Elective and 'urgent' PCI	3.2	1-year adjusted OR: 2.66 [1.44 - 4.92]	0.002
Ndrepepa et al.	5,348	Elective, ACS	4.0	1-year adjusted HR: 2.96 [1.96 - 4.48]	<0.0001
ACUITY	13,819	ACS only	4.7	30-day OR: 7.55 [4.68 - 12.18]	<0.0001
Kim et al.	6,799	Unselected	8.0	1-year RR: 2.03 (transfused patients)	0.0028
Doyle et al.	17,901	Unselected	4.8	30-day adjusted HR: 9.96 [6.94 - 14.3]	<0.0001
GRACE Registry	24,045	ACS	3.9	In-hospital adjusted OR: 1.64 [1.18 - 2.28]	<0.001
Yatskar et al.	6,656	Unselected	1.8	In-hospital adjusted OR: 3.59 [1.66 - 7.77] 1-year adjusted HR: 1.65 [1.01 - 2.70]	0.001 0.048

Meta-analysis: Short-term all-cause mortality

Study or subgroup	Transradial n/N	Transtemoral n/N	Risk Ratio M-H,Fixed,95% C	Weight	Risk Ratio M-H,Fixed,95% CI	
Akturk 2014	0/408	1/428	+ +	0.8 %	0.35 [0.01, 8.58]	
Bernat 2014	11/348	14/359		7.4 %	0.81 [0.37, 1.76]	
Brasselet 2007	3/57	3/57		1.6%	1.00 [0.21, 4.75]	
Jolly 2011	53/3507	66/3514		35.2 %	0.80 [0.56, 1.15]	
Kiemeneij 1997	1/300	0/300	+	0.3 %	3.00 [0.12, 73.35]	
Koltowski 2014	1/52	3/51		1.6 %	0.33 [0.04, 3.04]	
Louvard 2004	0/192	1/185	+ +		0.32[0.01, 7.84]	
Saito 2003	4/77	6/72		3.3 %	0.62[0.18, 2.12]	
Slagboom 2005	3/322	1/322		0.5 %	3.00 [0.31, 28.69]	
Valgimigli 2015	66/4197	91/4207	=	48.5 %	0.73 [0.53, 1.00]	
Total (95% CI) Total events: 142 (Transrad Heterogeneity: Chi² = 3.60,	d1 = 9 (P = 0.94); l2 =0.09	9495	•	100.0 %	0.77 [0.62, 0.95]	
Test for overall effect: Z = 2.4 Test for subgroup difference		Favo	ours TRI F	avours TFI		
		Favours transradia	0.02 0.1 1 I Favou	10 50 urs transfemoral		

Five Pivotal RCTs for TFI versus TRI

	N	NSTEMI/ STEMI	Primary outcome	MACE	Bleeding	FU
RIVAL	7,021	NSTEMI/ STEMI	NACE	Death, MI, Stroke	TIMI major	30 days
RIFLE- STEACS	1,001	STEMI	NACE	Cardiac death, MI, Stroke, TLR	TIMI major	30 days
STEMI- RADIAL	707	STEMI	NACE	Death, MI, Stroke	HORIZONS-AMI	30 days
MATRIX	8,404	NSTEMI/ STEMI	MACE NACE	Death, MI, Stroke	BARC major	30 days
SAFARI- STEMI	2,292	STEMI	All-cause mortality			30 days

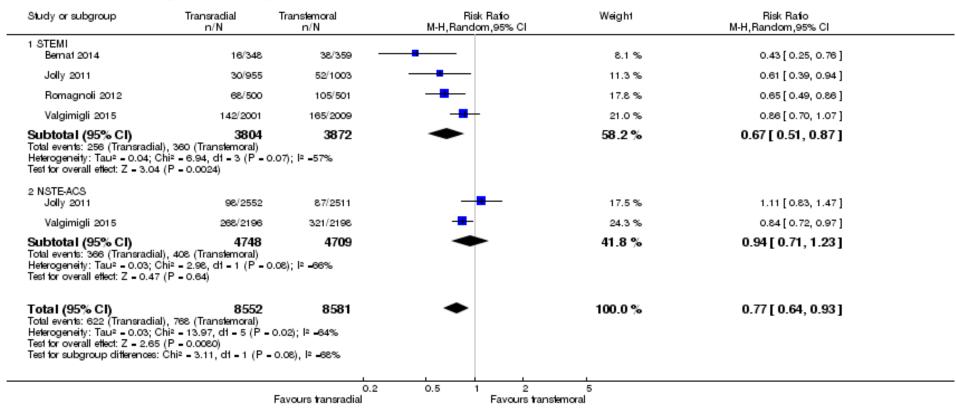


NACE (MACE + Major bleeding)

Review: Transradial versus transfermeral approach for diagnostic coronary angiography and percutaneous coronary intervention in people with coronary artery disease

Comparison: 1 Transradial versus transfernoral approach

Outcome: 1 Short-term NACE



NACE (MACE + Major bleeding)

Review: Transradial versus transfermoral approach for diagnostic coronary angiography and percutaneous coronary intervention in people with coronary artery disease

Comparison: 1 Transradial versus transfermoral approach

Outcome: 3 Short-term NACE (STEMI vs NSTE-ACS)

2017 ESC Guidelines for the management of AMI

CHANGE IN RECOMMENDATIONS 2012 2017

Radial accessa

MATRIX¹⁴³

DES over BMS

EXAMINATION^{150, 151}
COMFORTABLE-AMI¹⁴⁹, NORSTENT¹⁵²

Complete Revascularization^b

PRAMI¹⁶⁸, DANAMI-3-PRIMULTI¹⁷⁰, CVLPRIT¹⁶⁹, Compare-Acute¹⁷¹

Thrombus Aspiration^c

TOTAL 159, TASTE 157

Bivalirudin

MATRIX²⁰⁹, HEAT-PPCI²⁰⁵

Enoxaparin

ATOLL^{200,201}, Meta-analysis²⁰²

Early Hospital Discharged

Small trials & observational data²⁵⁹⁻²⁶²

Oxygen when SaO2 <95%

AVOID⁶⁴, DETO2X⁶⁶ Oxygen when SaO2 <90%

Dose i.V. TNK-tPA same in all patients

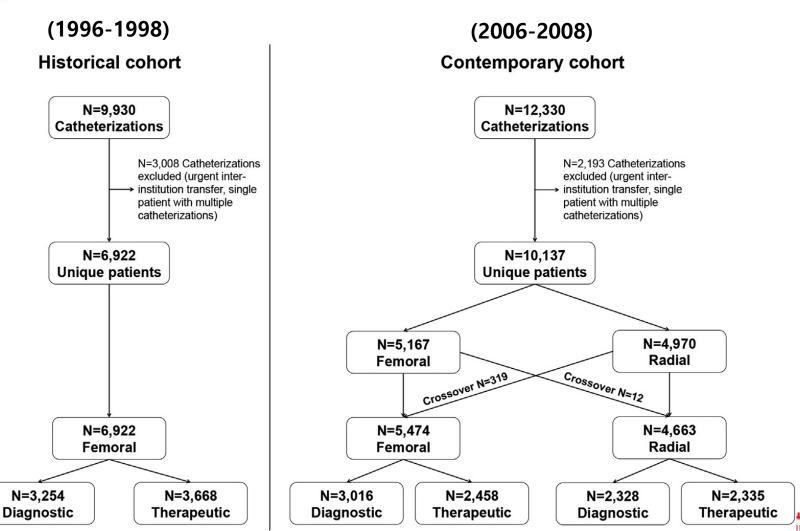
STREAM¹²¹

Dose i.V. TNK-tPA half in Pts ≥75 years

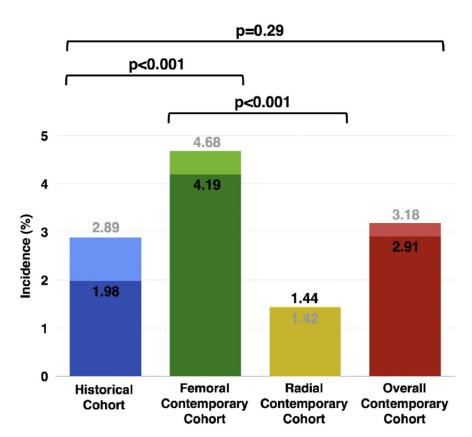
Procedural aspects of the primary percutaneous coronary intervention strategy

Recommendations	Class ^a	Level ^b
IRA strategy		
Primary PCI of the IRA is indicated. 114,116,139,140	- 1	A
New coronary angiography with PCI if indicated is recommended in patients with symptoms or signs of recurrent or remaining ischaemia after primary PCI.	1	С
IRA technique		
Stenting is recommended (over balloon angioplasty) for primary PCI. 146,147	- 1	A
Stenting with new-generation DES is recommended over BMS for primary PCI. 148–151,178,179	- 1	Α
Radial access is recommended over femoral access if performed by an experienced radial operator. 143–145,180	T.	А
Routine use of thrombus aspiration is not recommended. 157,159	Ш	Α
Routine use of deferred stenting is not recommended. 153–155	Ш	В

Five Pivotal RCTs for TFI versus TRI


	N	Crossover			
	IN	%TRI to TFI	%TFI to TRI		
RIVAL	7,021	5.3%	1.6%		
RIFLE-STEACS	1,001	9.4%	2.8%		
STEMI-RADIAL	707	3.7%	0.6%		
MATRIX	8,404	4.3%	2.4%		
SAFARI-STEMI	2,292	8.1%	2.3%		

Campeau radial paradox Does Exist!!

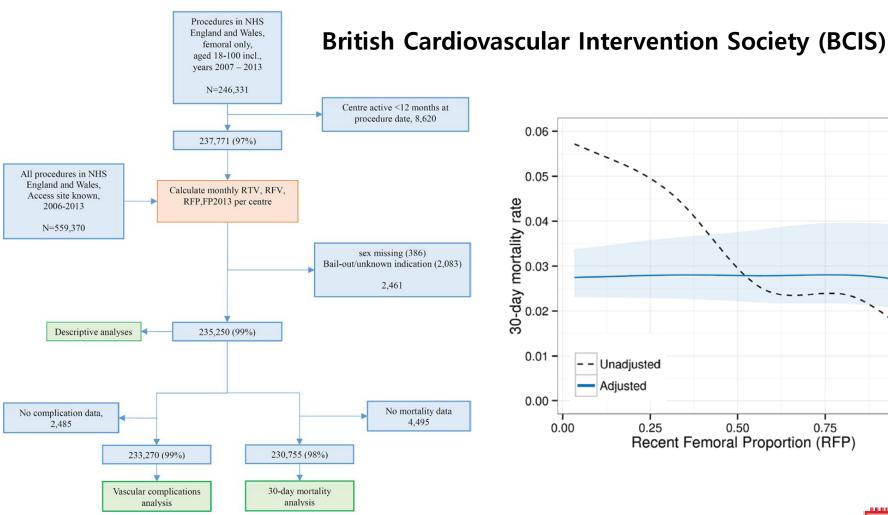


Campeau radial paradox Does Exist!!

TABLE 3 Vascular	Access Site Comp	lications			
	Historical Cohort	l Cohort Contemporary Cohort			
	Femoral (n = 6,922)	Femoral (n = 5,474)	Radial (n = 4,663)	Overall (n = 10,137)	p Value
Major hematoma	86 (1.24%)	208 (3.80%)	61 (1.31%)	269 (2.65%)	<0.0001* <0.0001† <0.0001‡
Pseudoaneurysm	81 (1.17%)	16 (0.29%)	0	16 (0.16%)	<0.0001* <0.0001† 0.0002‡
Arterial thrombosis	12 (0.17%)	6 (0.11%)	1 (0.02%)	7 (0.07%)	0.04 [*] 0.35† 0.09‡
Arterial dissection	3 (0.04%)	7 (0.13%)	0	7 (0.07%)	0.50* 0.10† 0.01‡
Arterial perforation	0	3 (0.05%)	1 (0.02%)	4 (0.04%)	0.10* 0.05† 0.40‡
Arteriovenous fistula	9 (0.13%)	2 (0.04%)	0	2 (0.02%)	0.005* 0.08† 0.19‡
Retroperitoneal hematoma	2 (0.03%)	12 (0.22%)	0	12 (0.12%)	0.05* 0.002† 0.001‡
Distal embolization	4 (0.06%)	1 (0.02%)	0	1 (0.01%)	0.07 [*] 0.28† 0.36‡
Others§	3 (0.04%)	1 (0.02%)	3 (0.06%)	4 (0.04%)	0.90 [*] 0.44† 0.24‡
Total	200 (2.89%)	256 (4.68%)	66 (1.42%)	322 (3.18%)	0.29* <0.0001† <0.0001‡

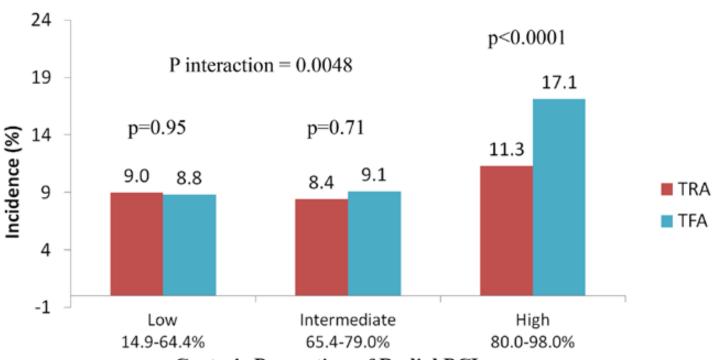
Values are n (%). The p value comparisons: *historical vs. overall contemporary cohort; †historical vs. femoral contemporary cohort; ‡radial vs. femoral contemporary cohort. §"Others" indicates arterial avulsion, femoral nerve injury, and local infection.

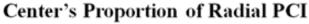
Rates of VASC



Campeau radial paradox Does Not Exist!!

0.06 0.05 30-day mortality rate 0.01 Unadjusted Adjusted 0.00 0.75 0.25 0.50 0.00 1.00 Recent Femoral Proportion (RFP)

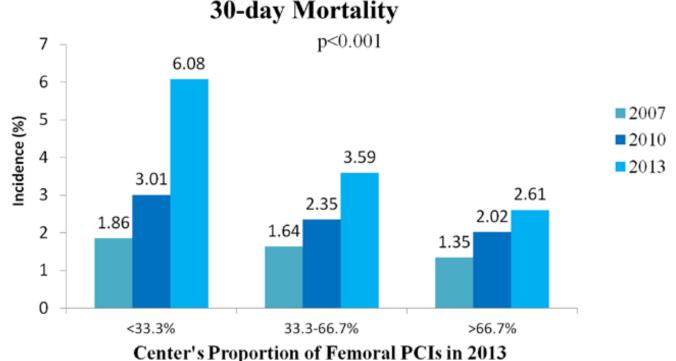




Campeau Radial Paradox Might Exist for Several Reasons

First: higher clinical events of femoral access in high-volume default radial center

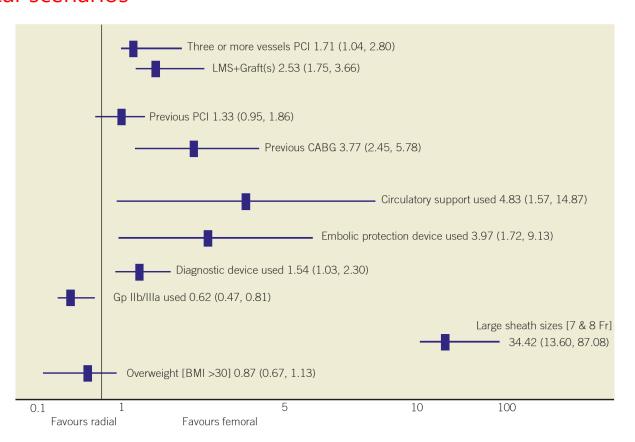
MATRIX
Net Adverse Clinical Events (NACE)



Campeau Radial Paradox Might Exist for Several Reasons

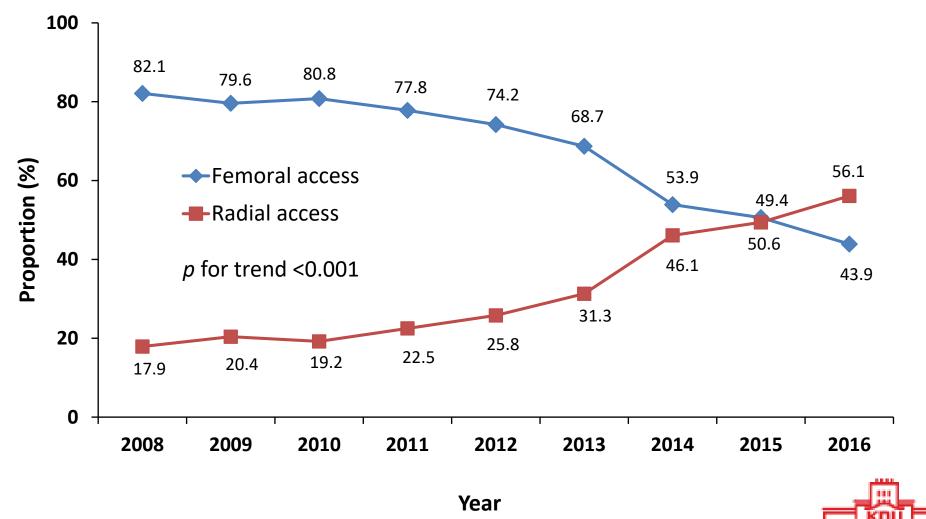
Second: Newly trained operators who predominantly use TRI may have struggled with TFI because of suboptimal training

British Cardiovascular Intervention Society Database

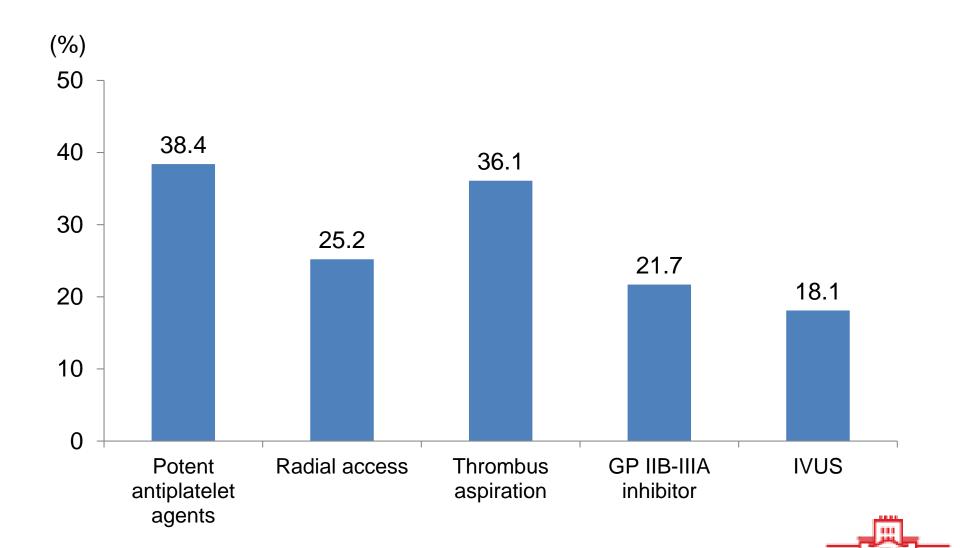


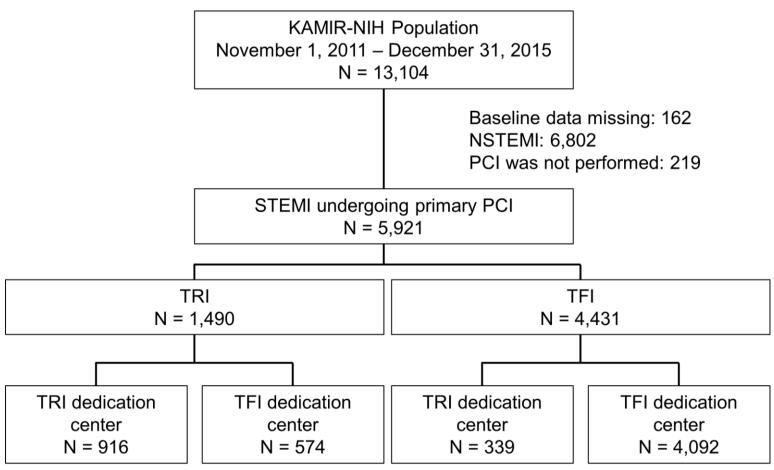
Campeau Radial Paradox Might Exist for Several Reasons

Third: Modern radial operators reserve the femoral access for complex PCIs in critical clinical scenarios

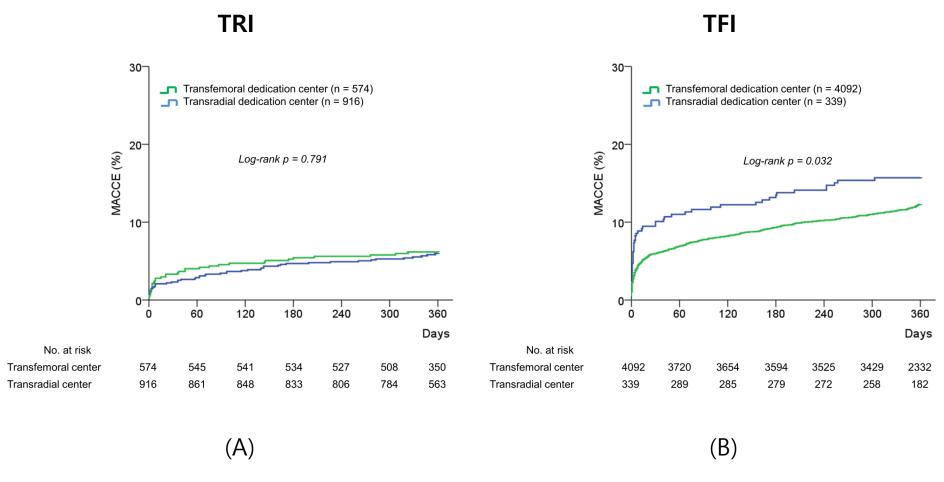


Variables Independently associated with femoral route by default radial operators ____

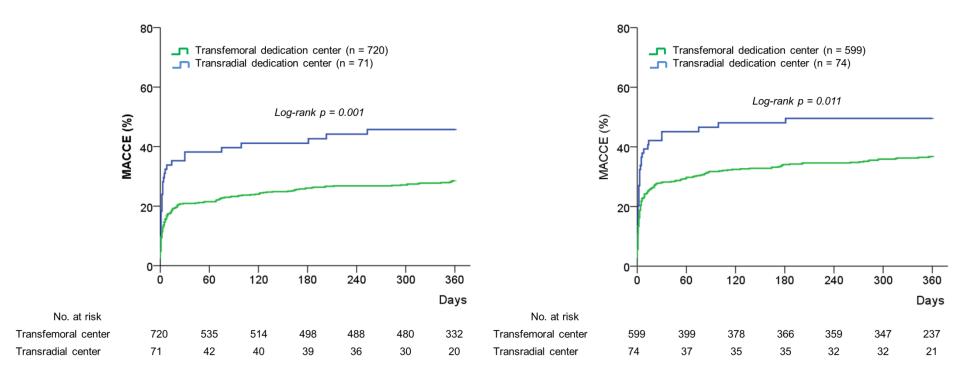

Temporal trends in vascular access in Korean AMI patients



Usages of each strategy in KAMIR


KAMIR-NIH

Kaplan-Meier survival curves for MACCEs at 1 year between TRI dedicated center and TFI dedicated center



Kaplan-Meier survival curves for MACCEs at 1 year between TRI and TFI dedication center in TFI group

Cardiogenic Shock

Killip Class III-IV

Take Home Message

- Default radial operators would undertake a PCI from the femoral access in patients with challenging clinical scenarios.
- Femoral access in a default radial PCI center was an independent predictor for clinical events.
- Radial paradox might exist and appear to offset the benefit of radial access.
- Therefore, high-volume default radial PCI centers should make an effort to overcome radial paradox and improve clinical outcome during transfemoral PCI.

Thank you for your attention!!

KYUNGPOOK NATIONAL UNIVERSITY SCHOOL OF MEDICINE