Joint meeting of Cardiovascular Intervention and Revascularization 2019

Interventions for Mitral and Structural Heart Disease

Intervention for stroke prevention : PFO

Jae Hyoung Park

Department of Cardiology, Cardiovascular Center, Korea University Anam Hospital

PFO (Patent foramen ovale)

Cardiology. 2019;143(1):62-72.

Is there anybody to have a PFO?

High prevalence : 20~25% of people have a PFO

J Am Soc Echocardiogr. 2015;28(8):910-58.

Annual incidence of cryptogenic / PFO stroke

The mean diameter of persisting PFOs : 4.9 mm (1~19 mm) The middle cerebral artery stem (3 mm) and major cerebral cortical branches (1 mm)

Stroke. 2018;49:1541-8.

PFO is associated with Cryptogenic Stroke

- Lechat et al. (N Engl J Med. 1988): first published, case-control study •
 - Increased prevalence of PFOs in ~60 patients < 55 years old with cryptogenic stroke
 - **Cryptogenic CVA ; 40% had PFOs Vs 10% in the control group.**

udy	Stroke n/N	Control n/N	OR (95%Cl Fixed)	Weight %	OR (95%Cl Fixed)	
Cabanes, 1993 (P)	43 / 100	9/50		13.8	3.44[1.51,7.83]	
Chen, 1991 (P)	15/34	7 / 40		→ 7.2	3.72[1.29,10.74]	
Del Sette, 1998 (P)	26/73	8 / 50		12.3	2.90[1.19,7.11]	
Job, 1994 (P)	38/74	27/63		28.6	1.41[0.72,2.77]	
Jones, 1994 (P)	7/26	2/19		→ 3.4	3.13[0.57,17.18]	
Lechat, 1988 (P)	24/60	10 / 100		■→ 9.1	6.00[2.61,13.80]	
Webster, 1988 (P)	20 / 40	6/40		■→ 6.0	5.67[1.95,16.46]	
Zahn, 1995 (P)	50 / 120	11/55		_ 17.7	2.86[1.34,6.07]	
de Belder,1992 (P)	5/39	1/39		∎—→ 1.8	5.59[0.62,50.25]	
tal(95%Cl)	228 / 566	81 / 456	+	100.0	3.10[2.29,4.21]	
i-square 9.40 (df=8) P: 0.31	<u>40%</u> V	s <u>17.8%</u>				Neuroloay 20
		la Chalan	6 V			
Group	(N=227)	oke Stroke d	(N=276)			Adjusted Odds Ratio (95% CI)
All patients	77/227		34/276			3.12 (1.98-5.10)
Patients <55 yr	36/82		7/49 -	•		3.70 (1.42-9.65)
Patients ≥55 yr	41/145		27/227	•	£	3.00 (1.73-5.23)
	<u>33.9%</u>	Vs	<u>12.3%</u> –1.0 1.0	3.0 5.0	7.0 9.0	11.0
		Ne	gative Association	Positive	e Association	

N Engl J Med. 1988;318:1148-52.

00;55(8):1172-9.

Medical Vs. Closure (Round-1 RCTs)

HR 0.78 (95% CI 0.45-1.35) p=0.37 N Engl J Med. 2012;366:991-9.

HR 0.63 (95% CI 0.24-1.62) p=0.34 N Engl J Med. 2013;368:1083-91. HR 0.49 (95% CI 0.22-1.11) p=0.08 N Engl J Med. 2013;368:1092-100.

All 3 RCTs failed to meet primary end points!

Guidelines for the Prevention of Stroke

R	eco	mmenda	tions	
	1.	For pat		American American
		PFO, a		Heart Stroke Association Association
		Level of	Patent Foramen Ovale Recomme	endations
	2.	There a	2014 Recommendation	Revisions (2011)
		coagula	For patients with an ischemic stroke or TIA and a PFO who are not on anticoagulation therapy, antiplatelet therapy is	Class changed from IIa to I
		seconda	recommended. (Class I, LOE B)	
		(Class II	For patients with an ischemic stroke or TIA and both a PFO and a venous source of embolism, anticoagulation is indicated.	New Recommendations
	3.	There a	depending on stroke characteristics. (Class I, LOE A). When	
		tion reg	reasonable (Class IIa, LOE C).	
		and PF	For patients with a cryptogenic ischemic stroke or TIA and a PFO without evidence for DVT, available data does not support a benefit for PFO closure. (Class III, LOE A)	Revised Recommendation
2	011		In the setting of PFO and DVT, PFO closure by a transcatheter device might be considered, depending on the risk of recurrent DVT. (Class IIb, LOE C)	New Recommendation

©2014 American Heart Association, Inc.

59

RESPECT 10 yr Final Results

- Mean f/u = 5.9 yrs
- All endpoints were recurrent non-fatal ischemic stroke
- 45% relative risk reduction in favor of device group in the intent to treat cohort
- Age : 18-60, cryptogenic stroke within 270 days.
- TEE visualization of micro-bubbles.

Robert J. Sommer. Presented at TCT 2017.

Extended Follow-up

FDA Approval 10/28/2016

DEPARTMENT OF HEALTH & HUMAN SERVICES	Public Health Service
	Food and Drug Administration 10003 New Hampshire Avenue Document Control Center - WO66-G609 Silver Spring, MD 20993-0002

October 28, 2016

St. Jude Medical, Inc. Rashmi Bhushan, PhD Manager, Regulatory Affairs 5050 Nathan Lane North Plymouth. Minnesota 55442

Re: P120021 Trade/Device Name: AMPLATZER PFO Occluder Filed: November 30, 2012 Amended: August 12, 2013, September 9, 2013, February 26, 2014, April 28, 2014, July 1, 2014, February 27, 2015, September 17, 2015, October 8, 2015 Product Code: MLV

Dear Rashmi Bhushan:

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has completed its review of your premarket approval application (PMA) for the AMPLATZER PFO Occluder. This device is indicated for percutaneous transcatheter closure of a patent foramen ovale (PFO) to reduce the risk of recurrent ischemic stroke in patients, predominantly between the ages of 18 and 60 years, who have had a cryptogenic stroke due to a presumed paradoxical embolism, as determined by a neurologist and cardiologist following an evaluation to exclude known causes of ischemic stroke. We are pleased to inform you that the PMA is approved. You may begin commercial distribution of the device in accordance with the conditions of approval described below.

SPECIAL ARTICLE

Practice advisory: Recurrent stroke with patent foramen ovale (update of practice parameter)

Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology

Recommendations: Clinicians should not routinely offer percutaneous PFO closure to patients with cryptogenic ischemic stroke outside of a research setting (Level R). In rare circumstances, such as recurrent strokes despite adequate medical therapy with no other mechanism identified, clinicians may offer the AMPLATZER PFO Occluder if it is available (Level C). In the absence of another indication for anticoagulation, clinicians may routinely offer antiplatelet medications instead of anticoagulation to patients with cryptogenic stroke and PFO (Level C). *Neurology*® 2016;87:815-821

MSCE

Correspondence to American Academy of Neurology: guidelines@aan.com

OUTLES MADINES MIL

in preventing stroke vs medical therapy alone (risk difference [RD] 0.13%, 95% confidence interval [CI] -2.2% to 2.0%). Percutaneous PFO closure with the AMPLATZER PFO Occluder possibly decreases the risk of recurrent stroke (RD -1.68%, 95% CI -3.18% to -0.19%), possibly increases the risk of new-onset atrial fibrillation (AF) (RD 1.64%, 95% CI 0.07%-3.2%), and is highly likely to be associated with a procedural complication risk of 3.4% (95% CI 2.3%-5%). There is insufficient evidence to determine the efficacy of anticoagulation compared with antiplatelet therapy in preventing recurrent stroke (RD 2%, 95% CI -21% to 25%).

Recommendations: Clinicians should not routinely offer percutaneous PFO closure to patients with cryptogenic ischemic stroke outside of a research setting (Level R). In rare circumstances, such as recurrent strokes despite adequate medical therapy with no other mechanism identified, clinicians may offer the AMPLATZER PFO Occluder if it is available (Level C). In the absence of another indication for anticoagulation, clinicians may routinely offer antiplatelet medications instead of anticoagulation to patients with cryptogenic stroke and PFO (Level C). *Neurology*® 2016;87:815-821

Neurology. 2016;87(8):815-21.

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Patent Foramen Ovale Closure or Antiplatelet Therapy for Cryptogenic Stroke

Lars Søndergaard, M.D., Scott E. Kasner, M.D., John F. Rhodes, M.D., Grethe Andersen, M.D., D.M.Sc., Helle K. Iversen, M.D., D.M.Sc., Jens E. Nielsen-Kudsk, M.D., D.M.Sc., Magnus Settergren, M.D., Ph.D., Christina Sjöstrand, M.D., Ph.D., Risto O. Roine, M.D., David Hildick-Smith. M.D., J. David Spence, M.D., and Lars Thomassen, M.D., for the Gore REDUCE Clinical Study Investigators*

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 SEPTEMBER 14, 2017

VOL. 377 NO. 11

Patent Foramen Ovale Closure or Anticoagulation vs. Antiplatelets after Stroke

J.-L. Mas, G. Derumeaux, B. Guillon, E. Massardier, H. Hosseini, L. Mechtouff, C. Arquizan, Y. Béjot, F. Vuillier, O. Detante, C. Guidoux, S. Canaple, C. Vaduva, N. Dequatre-Ponchelle, I. Sibon, P. Garnier, A. Ferrier, S. Timsit, E. Robinet-Borgomano, D. Sablot, J.-C. Lacour, M. Zuber, P. Favrole, J.-F. Pinel, M. Apoil, P. Reiner, C. Lefebvre, P. Guérin, C. Piot, R. Rossi, J.-L. Dubois-Randé, J.-C. Eicher, N. Meneveau, J.-R. Lusson, B. Bertrand, J.-M. Schleich, F. Godart, J.-B. Thambo, L. Leborgne, P. Michel, L. Pierard, G. Turc, M. Barthelet, A. Charles-Nelson, C. Weimar, T. Moulin, J.-M. Juliard, and G. Chatellier, for the CLOSE Investigators*

N Engl J Med. 2017;377(11):1033-1042.

N Engl J Med. 2017;377(11):1011-1021.

N=663 Mean fu 5.3 yrs

ASA (septum primum excursion > 10mm) or Large shunt

Korea University College of Medicine

group

Guidelines

Canadian stroke best practice recommendations: Secondary prevention of stroke, sixth edition practice guidelines, update 2017 International Journal of Stroke 0(0) 1-24 © 2017 World Stroke Organization Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1747493017743062 journals.sagepub.com/home/wso

9.1 Patent Foramen Ovale (PFO) (Revised 2017)

- i. Patients with a recent ischemic stroke or TIA attributed to a PFO should have an evaluation by clinicians with stroke and cardiovascular expertise [Evidence Level C].
- ii. For carefully-selected patients with a recent ischemic stroke or TIA attributed to a PFO, PFO device closure plus long-term antiplatelet therapy is recommended over long-term antithrombotic therapy alone provided all the following criteria are met [Evidence Level A]:
 - a. Age 18-60 years;
 - b. The diagnosis of the index stroke event is confirmed by imaging as a nonlacunar embolic ischemic stroke or a TIA with positive neuroimaging or cortical symptoms;
 - c. The patient has been evaluated by a neurologist or clinician with stroke expertise, and the PFO is felt to be the most likely cause for the index stroke event following a thorough etiological evaluation to exclude alternate etiologies.

Int J Stroke. 2017 Nov 24 [E-pub] 2018;13(4):420-443.

Cryptogenic Stroke and High-risk PFO : Defense-PFO

	PFO Closure Group	Medication-Only Group	
2-Yr Outcome	(n = 60)	(n = 60)	p Value
Primary endpoint	0 (0.0)	6 (12.9)	0.013
Secondary endpoint			
Ischemic stroke	0 (0.0)	5 (10.5)	0.023
Vascular death	0 (0.0)	0 (0.0)	NA
TIMI-defined major bleeding	0 (0.0)	2 (4.9)	0.15
Hemorrhagic stroke	0 (0.0)	1 (2.5)	0.30
Transient ischemic attack	0 (0.0)	1 (2.0)	0.32
Systemic embolism	0 (0.0)	0 (0.0)	NA
New ischemic lesion on MRI	3/34 (8.8)	7/38 (18.4)	0.24

Values are n (%) (Kaplan-Meier estimates) or n/N (%).

MRI = magnetic resonance imaging; NA = not applicable; PFO = patent for amen ovale; TIMI = Thrombolysis In Myocardial Infarction.

[DEFENSE-PFO] High-risk PFO ASA, hypermobility ; excursion \ge 10 mm Large : separation of p from s \ge 2mm

J Am Coll Cardiol. 2018;71:2335-42.

Korea University College of Medicine

DEFENSE-PFO

Unique definition of morphological 'High-risk' PFO

Baseline demographic and transesophageal echocardiographic characteristics in patients with cryptogenic stroke and patent foramen ovale (PFO) stratified by recurrent stroke during medical treatment

Variable	Recu	p Value		
	No $(n = 145)$	Yes $(n = 14)$		
Demographic data				
Age (years)	52 ± 13	57 ± 15	0.24	
Men	108 (75%)	9 (64%)	0.52	
Hypertension	72 (50%)	10 (71%)	0.12	
Diabetes mellitus	27 (19%)	0 (0%)	0.13	
Smoking	55 (38%)	3 (21%)	0.22	
Family history of stroke	7 (5%)	1 (7%)	0.52	
Echocardiographic data				
Left-to-right shunt	48 (33%)	3 (21%)	0.55	
Right-to-left shunt	11 (8%)	1 (7%)	0.34	
Shunt grade 3	15 (11%)	6 (43%)	0.010	
Atrial septal aneurysm or	13 (9%)	5 (36%)	0.011	
hypermobility				
Patent foramen ovale size (mm)	1.8 ± 1.0	3.9 ± 1.0	< 0.001	
Length of eustachian valve (mm)	13.0 ± 5.7	13.6 ± 7.2	0.908	

Am J Cardiol 2010;106:129-134.

J Am Coll Cardiol 2018;71:2335-42.

DEFENSE-PFO

Final Korean knockout-punch

EDGAR US THE KOREAN ZONBIE¹⁶

DEC 21 SAT

사직실내체육관 SAJIK ARENA

Korea University College of Medicine

J Am Coll Cardiol 20

#UFCBUSAN

High risk PFO Scoring system

ECHOCARDIOGRAPHIC ASSESSMENT OF PATENT FORAMEN OVALE

Identification of High-Risk Patent Foramen Ovale Associated With Cryptogenic Stroke: Development of a Scoring System

Rie Nakayama, MD, Yoichi Takaya, MD, Teiji Akagi, MD, Nobuhisa Watanabe, RDCS, Madoka Ikeda, RDCS, Koji Nakagawa, MD, Norihisa Toh, MD, and Hiroshi Ito, MD, Okayama, Japan

J Am Soc Echocardiogr. 2019 Jul;32(7):811-6.

High risk PFO Scoring system

J Am Soc Echocardiogr. 2019 Jul;32(7):811-6.

High risk PFO Scoring system

Table 3 Factors related to CS

	Univariate analy	/sis	Multivariate analy	vsis 1	Multivariate analysis 2			
Variable	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value	Odds ratio (95% CI)	P value		
Large-size PFO, ≥2 mm	2.54 (1.16-5.59)	.02	0.83 (0.24-2.62)	.754	1.16 (0.33-3.94)	.815		
Long-tunnel PFO, ≥10 mm	2.66 (1.19-5.97)	.017	3.27 (1.11-10.6)	.032	3.16 (1.04-10.5)	.042		
ASA	4.96 (1.82-13.5)	.002	3.33 (0.94-13.0)	.064	2.51 (0.68-10.3)	.171		
Hypermobile interatrial septum	11.4 (4.43-29.1)	<.001	9.09 (2.84-33.5)	<.001	7.26 (2.19-27.5)	.001		
Eustachian valve or Chiari's network	4.47 (1.72-11.6)	.002	4.71 (1.45-17.2)	.009	4.58 (1.41-16.9)	.011		
Large RL shunt during Valsalva maneuver	5.86 (2.51-13.7)	<.001	3.63 (1.23-11.3)	.020	3.87 (1.27-12.6)	.018		
Low-angle PFO, $\leq 10^{\circ}$	3.74 (1.14-12.3)	.029	5.80 (1.38-29.7)	.016	5.12 (1.10-30.3)	.037		
Age	4.34 (1.80-10.5)	.001			2.99 (0.77-12.3)	.112		
Hypertension	2.84 (1.12-7.20)	.023			1.64 (0.43-6.77)	.473		

Variables for multivariate analysis 1 included large PFO, long-tunnel PFO, the presence of ASA, the presence of hypermobile interatrial septum, the presence of prominent Eustachian valve or Chiari's network, the large RL shunt during Valsalva maneuver, and low-angle PFO. Variables for multi-variate analysis 2 added age and the prevalence of hypertension.

J Am Soc Echocardiogr. 2019 Jul;32(7):811-6.

CC : Lt weakness & paraesthesia
 (2018.2. other hospital admission)
 Rt. MCA infarction, thrombolysis

Recovery of neurology \rightarrow transfer to our hospital for PFO closure

> Past history : HTN/DM(-/-) Smoking/Alcohol(-/-)

RoPE (Risk of Paradoxical Embolism)

No Hx of HTN : 1 No Hx of DM : 1 No Hx of stroke or TIA : 1 Nonsmoker : 1 Cortical infarct on imaging : 1 Age 18-29 : 5

Total score : 10/10 Prevalence of Pts with a PFO : 73% PFO-attributable fraction : 88% 2y stroke/TIA recur rates : 2%

Stroke. 2009;40(7):2349-55.

TEE (2018-2-28)

High risk? Small size, small amount of shunt, but, ASA or hypermobility (+) & Long tunnel \geq 10 mm, Low angle \leq 10 ° [Score 3] High risk PFO.

What cardiologists & neurologists need to know

Key Points

- In the presence of a patent foramen ovale (PFO), a transient ischemic attack is indistinguishable from a complex migraine. Both have transient neurologic deficits with a normal MRI.
- The size of a PFO by echo should not be a criterion for closure. A stroke or peripheral embolus associated with a PFO is the indication for closure.
- Informed consent for PFO closure should include the warning that about 1 in 500 cases require device removal through open-heart surgery.

- PFO closure is a simple and safe outpatient procedure that replaces the need for openheart surgery.
- 2. 4 RCTs showed that closure is preferable.
- 3. 50% of migraine with aura have a PFO.
- 4. Stroke per year is 1 in 1000 people with a PFO.
- Recurrent stroke is 1% per year, 10 % at 10 years and 50% in lifetime (50 years)
- PFO itself does not cause a stroke. We need reduce venous clot.
- 7. 60% of first-degree relatives of a proband with
 - a PFO-associated condition will have a PFO.

Benefit is better only in RCTs with high-risk PFOs

Device closure vs. medical therapy	Event rate	OR [95% CI]	1 ²	NNT/NNH
Stroke recurrence ¹³				
Overall ^a	1.96% vs. 4.61%	0.38 [0.18-0.80]	53%	37.7
Only in RCTs with high-risk PFOs	0.81% vs. 5.98%	0.18 [0.07-0.45]	2%	19.3
In Patients with high-risk PFOs in RCTs	1.62% vs. 5.42%	0.34 [0.15-0.76]	49%	26.3
Device closure vs. antiplatelet therapy	2.38% vs. 6.07%	0.38 [0.17-0.84]	60%	27.1
Device closure vs. OAC therapy	2.28% vs. 3.82%	0.74 [0.20-2.74]	31%	N/A
TIA recurrence ¹³	3.39% vs. 3.83%	0.85 [0.59-1.22]	0%	N/A
Death ¹³	0.37% vs. 0.51%	0.92 [0.31-2.71]	11%	N/A
New onset atrial fibrillation ¹³				
Overall	4.92% vs. 1.02%	4.15 [2.42-7.13]	1%	25.6
Beyond 45 days	2.01% vs. 1.02%	1.80 [0.99-3.28]	0%	N/A

CI, confidence interval; 1², heterogeneity between the included studies; N/A, non-applicable; NNH, number needed to harm; NNT, number needed to treat; OAC, oral anticoagulation; OR, odds ratio; PFO, patent foramen ovale; RCT, randomized clinical trial; TIA, transient ischaemic attack.

^aIntention-to-treat analysis.

Eur Heart J. 2019;40(28):2339-50.

Key points of safe closure

Transcatheter Closure of Patent Foramen Ovale Devices and Technique

Matthew J. Price, MD

KEY POINTS

- A comprehensive preprocedure evaluation should be performed to exclude known mechanisms of ischemic stroke.
- Transesophageal echocardiography is critical to exclude other causes of cardiac emboli, confirm the presence of a patent foramen ovale (PFO), and define its anatomic characteristics.
- Key aspects to reduce procedural complications include performing all catheter exchanges within the left atrium over a stiff wire placed within one of the pulmonary veins and by thorough de-airing and flushing of the delivery sheath and occluder.
- Although device sizing is usually straightforward, special consideration is required in cases that have a redundant, aneurysmal interatrial septum or a thick septum secundum.
- Fastidious technique, combined with intracardiac imaging under conscious sedation, can minimize procedural complications and enhance procedural success.

Currently available devices for PFO

Devices	Approval/distribution/No. of shipment or implantation	Advantages	Disadvantages	Considerations		,,,,,,,,					
Amplatzer Septal Occluder	FDA/Worldwide/>500,000	General familiarity	Most of the reported cases of erosion	Adverse events have been extensively investigated		A	B		C		
	•	Largest experience with accumulated data including long- term safety	Nickel release	Non-self-centering version is also available (cribriform devices)			1 Alter			A	
	1	Widest range of sizes	Stiff device-cable coupling — device jumping on release				14/1000			1	
Occlutech Figulla Flex II ASD Occluder	CE mark/>80 countries/>50,000 including previous	Soft and flexible braiding conforms to the defect may reduce erosion risk	Fewer available sizes	Usually regarded as a softer device than ASO			A strange	9		V/E	-
	generation devices		Larger delivery sheaths	Non-self-centering version is also available (uniform devices)			and the second			16	
			Less experience and data — lack of long term data	Order-made fenestrated device is available							
		Flexible delivery system: 50°angulation + shapeable cable — less tension and jump on release	1							T	
	1	Less material, no hub on LA disk smaller RA hub	1							A	
Core Cardioforr	FDA (CE mark)/	Titanium oxide coated surface	Connect close > 18 mm	Non colf contoring daving							
Septal Occluder	 FDA (CE marky 15 countries/>8,000; 22 000 including HSO 	stream	defect	Non-self-centering device				81	A CONTRACTOR		A
	>33,000 including new	Softer device with less metal content; not likely cause erosion	Only 4 available sizes relatively larger delivery system for smaller defects					-			
		Thinner device profile	Rigid coupling between device and control catheter before unlocking								
		Good alignment to the septum after locking of occluder (retrieval is still possible if mis-positioned)	Less experience and data — lack of long term data					1			
Cocoon Septal Occluder	CE mark/22 countries/>40,000	Nano-platinum coated surface — prevent nickel release — enhance radio-opacity and blocompatibility	Stiff device-cable coupling — device jumping on release	Usually regarded as a softer device than ASO				N	No	Va	
	Ţ	Softer and lighter device — may reduce erosion risk	Fewer available sizes		3	3 devices are availab	le in Korea.	1/		M	1
	•		Larger delivery sheaths								
			Less experience and data — lack of long term data		J	J Thorac Dis 2018:10	:S2909-22.				
KOREA								// 1			

Korea University College of Medicine

Algorithmic approach to patients with CS & PFO

Eur Heart J. 2019;40(28):2339-50.

Patient - centered care

Active PFO/stroke program, with emphasis on shared decision making and patient-centered care.

Catheter Cardiovasc Interv. 2019;1-16.

Not cryptogenic any more, PFO-associated stroke

ESC European Heart Journal (2019) **40**, 3182–3195 European Society doi:10.1093/eurheartj/ehy649 of Cardiology **ESC POSITION STATEMENT**

European position paper on the

management of patients with patent foramen ovale. General approach and left circulation thromboembolism

When a PFO is thought likely to be implicated in a cryptogenic embolism, the event should be classified as PFO-related instead of cryptogenic.

FSC

Eur Heart J. 2019 Oct 7;40(38):3182-95.

Algorithm for the diagnosis & secondary prevention

Figure I Algorithm for the diagnosis of PFO. c-TCD: contrastenhanced transcranial Doppler; c-TOE: contrast-enhanced transoesophageal echocardiography; c-TTE: contrast-enhanced transthoracic echocardiography; –negative test for the presence of right-to-left shunt; +positive test for the presence of right-to-left shunt.

The risk of stroke recurrence & major bleeding

				Odds Ratio												
Study or Subgroup log[O	dds Ratio]	SE	Weight	IV, Random, 95% Cl		OAT		Aspir	in		Odds Ratio		Odds	Ratio		
1.1.1 Randomized comparison					Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95% C		
CLOSE 1, 2017 Subtotal (05% CI)	-0.091	0.069	4.5%	0.91 (0.80, 1.05)	Bougousslavsky et al,1996	2	37	0	92	6.4%	13.03 [0.61, 278.12]			-		
Heterogeneity Not applicable			40.070	0.51 [0.00, 1.05]	Casaubon et al, 2007	0	20	0	41		Not estimable					
Test for overall effect: $7 = 1.32$ (P = 0	19)				Cerrato et al, 2006	0	17	0	48		Not estimable					
					CLOSE 2017	10	187	4	174	43.3%	2.40 [0.74, 7.80]					
1.1.2 Adjusted observational comp	arison				Cujec et al 1999	5	38	0	36	7.0%	11 99 10 64 225 081					
Cerrato et al, 2006	-0.075	0.031	6.0%	0.93 [0.87, 0.99]	Hanna at al 1004	້ຳ	6	0	8	5.5%	0 20 (0 24, 252 45)					
Cujec et al, 1999	-0.459	0.112	3.0%	0.63 [0.51, 0.79]	Hanna et al, 1994		45		47	0.0 %	9.29 (0.34, 202.40)					
Schuchlenz et al, 2005	-0.361	0.041	5.6%	0.70 [0.64, 0.76]	Hausmann et al, 1995	0	15	0	11		Not estimable					
Subtotal (95% CI)			14./%	0.75 [0.59, 0.95]	Lee et al, 2010	5	60	0	99	7.1%	19.72 [1.07, 363.32]					
Heterogeneity: Tau* = 0.04; Chi* = 38	5.92, dt = 2 (P < 0.000	J01); I*= 9	5%	Mas et al, 1995	2	22	0	48	6.3%	11.83 [0.54, 257.37]				• • • •	
Test for overall effect $z = 2.34$ (P = 0	.02)				Mazzucco et al, 2012	0	3	0	49		Not estimable					
1.1.3 Not adjusted observational co	mparison				Paciaroni et al, 2011	2	24	0	93	6.4%	20.78 [0.96, 448.06]					•••••
Bougousslavsky et al, 1996	-0.076	0.025	6.2%	0.93 [0.88, 0.97]	Thanopoulos et al. 2006	0	0	4	44		Not estimable					
Casaubon et al, 2007	-0.165	0.057	5.0%	0.85 [0.76, 0.95]	Wahl et al. 2012	3	46	2	57	17.9%	1.92 [0.31, 12,00]					
CLOSURE I, 2012	0.018	0.006	6.5%	1.02 [1.01, 1.03]	Windecker et al. 2004	ň	70	ñ	70		Not ectimable					
Hanna et al, 1994	0.072	0.075	4.3%	1.07 [0.93, 1.24]	Windecker et al, 2004			0	10		Notestimable					
Harrer et al, 2006	-0.461	0.073	4.4%	0.63 [0.55, 0.73]	Total (05% CI)		663		003	100.0%	4 57 12 40 0 031					
Hausmann et al, 1995	-0.246	0.098	3.5%	0.78 [0.85, 0.95]	Total (95% CI)		555		000	100.0%	4.57 [2.10, 9.95]					
Homma et al, 2002	0.000	0.017	0.3%	1.07 [1.03, 1.10]	Total events	31		10								
Masetal 1995	-0.698	0.050	2.6%	0.50 (0.39, 0.64)	Heterogeneity: Tau ² = 0.00; C	hi² = 5.32	df = 7	(P = 0.62); I² = 0	%		0.02	0.1	1	10	50
Mas et al. 2001	-0.004	0.004	6.5%	1.00 (0.99, 1.00)	Test for overall effect: Z = 3.84	(P = 0.00)	01)					0.02	0.1	0.00	10	30
Mazzucco et al, 2012	0.673	0.064	4.7%	1.96 [1.73, 2.22]									ANTIPLATELET	UAC		
Paciaroni et al, 2011	0.412	0.045	5.5%	1.51 [1.38, 1.65]												
PC trial, 2012	-0.656	0.078	4.2%	0.52 [0.45, 0.60]												
RESPECT, 2012	-0.164	0.019	6.3%	0.85 [0.82, 0.88]	-											
Serena et al, 2008	-0.067	0.0155	6.4%	0.94 [0.91, 0.96]	-											
Windecker et al, 2004 Subtotal (95%, Ci)	-0.397	0.0597	4.9%	0.67 [0.60, 0.76]												
Heterogeneity Tauž = 0.01: Chiž = 60	1617 df-1	5/0 - 01	00.0%	- 00%	•											
Test for overall effect: 7 = 3.81 (P = 0	0001	5 (0.0	,000017,1	- 30 %												
Total (95% CI)			100.0%	0.88 [0.83, 0.92]	◆											
Heterogeneity: Tau ² = 0.01; Chi ² = 703.60, df = 19 (P < 0.00001); P = 97%																
Test for overall effect: Z = 4.98 (P < 0	.00001)			0.												
Test for subgroup differences: Chi ² =	= 2.12, df = 2	2 (P = 0.3	5), I ² = 5.6	%	OAC ANTIPLAT	ELEI										

Eur Heart J. 2019 Oct 7;40(38):3182-95. supplementary figure 7 & 8.

Medication after PFO closure

Position statements	Strength of the statement	Level of evidence	Ref.
Drug therapy and follow up after percutaneous closure			
It is reasonable to propose dual antiplatelet therapy for 1 to 6 months after PFO closure	Conditional	А	27, 29, 51, 112, 132, Supplementary Figure 11
We suggest a single antiplatelet therapy be continued for at least 5 years	Conditional	С	27–29, 51, 112, 132, 128, 138–140
The extension of the therapy with single antiplatelet beyond 5 years should be based on	Strong	С	-
the balance between patient's overall risk of stroke for other causes and haemorrhagic			
risk			
The choice of the type of antiplatelet drug in the follow-up is currently empiric	Strong	А	27–29, 51, 112, 132
The value of residual shunt after percutaneous closure cannot be deduced from available studies	Strong	С	124, 141–47
Systematic, high-quality data on follow-up are needed	Strong	С	-
To obtain comparable data we propose to perform:	Conditional	С	124, 141–147,
a. a TTE prior to hospital discharge			55 +Original meta-analyses
b. c-TCD at least once beyond six months to assess effective PFO closure and there-			page 4 and Supplementary
after, if residual shunt persists, annually until closure			Appendix 4
c. c-TOE or c-TTE in case of severe residual shunt at c-TCD, or recurrent events, or			
symptoms during follow-up			
Patients should undergo antibiotic prophylaxis for any invasive procedure performed in	Conditional	С	-
the first six months from PFO closure			

Eur Heart J. 2019 Oct 7;40(38):3182-95.

Future directions

- 1. To make standard criteria of 'High-risk' PFOs : Predictive models to identify patients who benefit a lot, a little, or not al all.
- 2. Role of anticoagulation, NOAC.
- 3. Role of new closure devices : tunnel insertion, bioabsorbable, suture.
- 4. Close or not for the anatomical 'Low-risk' PFOs and the elderly.
- 5. Refractory migraine with aura.
- 6. How to treat incidental large PFO without stroke or TIA.

Take home message

Take home figure Patent foramen ovale closure in patients with cryptogenic stroke. AF, atrial fibrillation; PFO, patent foramen ovale; RCT, randomized controlled trials; TCD, transcranial Doppler; TOE, transcrophageal echocardiography; TTE, transthoracic echocardiography; VTE, venous thromboembolism. *Predominantly antiplatelets. Orange arrows, patent foramen ovale; White arrows, atrial septal aneurysm.

Individuals most likely to benefit from PFO closure : [PFO stroke in the Heart Brain Team Decision]

1. Higher risk of morphology 2. Younger 3. Higher RoPE 4. Concomitant VTE 5. Embolic stroke pattern

Thank you for your attention

