

Asymptomatic Severe Aortic Stenosis: Ongoing Trials and Updated Evidence

Duk-Woo Park, MD., PhD.

Division of Cardiology, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

Conflict of Interest Statement

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

Consulting Fees/Honoraria Consulting Fees/Honoraria Consulting Fees/Honoraria <u>Company</u> Edwards LifeSciences Medtronic Inc Boston Scientific

>15 Years of TAVR

April 16, 2002; FIM-TAVR, Trans-septal

Clinical Trials

Trial Name	STS Score	Age
Inoperable Population		
PARTNER IB Trial (2010)	11.6	83
High Risk Population (>8)		
PARTNER IA Trial (2011)	11.8	84
CoreValve US Pivotal Trial (2014)	7.4	83
Intermediate Risk Population (4-8)		
PARTNER II Trial (2016)	5.8	82
Low Risk Population (<4)		
NOTION Trial (2015)	3.0	79
PARTNER III (2019)	1.9	73
Evolut Low Risk Trial (2019)	1.9	74

Innovation in TAVR

Remaining Clinical Needs

Innovation in TAVR Remaining Clinical Needs

- Bicuspid AV disease
- AS + concomitant disease (CAD, MR, AF)
- Severe asymptomatic AS
- Moderate AS + CHF
- Durability concerns (including valve leaflet thrombosis) and coronary obstruction/access
- Adjunct Pharmacotherapy
- High-risk severe AR

Landscape of TAVR - 2019 Clinical Research

Severe Asymptomatic AS

- In "truly" asymptomatic severe AS patients (negative stress tests), the CV event rate is ~50% at two years with conservative management
- The strategy of *"watching waiting" is problematic* resulting in many lost opportunities for optimal outcomes (preservation of LV mechanics, clinical benefits)
- In the "modern era" of TAVR (1% mortality, 1% strokes) earlier intervention is now possible, but more robust clinical evidence in the form of careful RCTs is clearly needed to support a strong recommendation!

EARLY TAVR Trial: Severe Asymptomatic AS Study Flow

Asymptomatic Severe AS and 2D-TTE (PV \geq 4m/s or AVA \leq 1 cm²)

Exclusion if patient is symptomatic, age <65 yo, EF<50%, concomitant surgical indications, or STS >8

Primary Endpoint (superiority): 2-year composite of all-cause mortality, all strokes, and repeat hospitalizations (CV) Principal Investigators: Philippe Généreux, Allan Schwartz Chair: Martin B. Leon

CardioVascular Research Foundation

COLLEGE MEDICINE

ORIGINAL ARTICLE

Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis

Duk-Hyun Kang, M.D., Ph.D., Sung-Ji Park, M.D., Ph.D., Seung-Ah Lee, M.D., Sahmin Lee, M.D., Ph.D., Dae-Hee Kim, M.D., Ph.D., Hyung-Kwan Kim, M.D., Ph.D., Sung-Cheol Yun, Ph.D., Geu-Ru Hong, M.D., Ph.D., Jong-Min Song, M.D., Ph.D., Cheol-Hyun Chung, M.D., Ph.D., Jae-Kwan Song, M.D., Ph.D., Jae-Won Lee, M.D., Ph.D., and Seung-Woo Park, M.D., Ph.D.

Early Surgery versus Conventional Management for Asymptomatic Severe Aortic Stenosis

Duk-Hyun Kang MD PhD

on behalf of the RECOVERY Investigators

Asan Medical Center Seoul, Korea

AHA 2019 Late Breaking Trial

Introduction

- Although aortic valve replacement (AVR) is the only effective therapy for symptomatic severe aortic stenosis (AS), optimal timing for AVR in *asymptomatic* severe AS remains controversial
- In asymptomatic patients, the potential benefit of preventing sudden death may not be greater than the risk of AVR
- Watchful observation is recommended for the majority of asymptomatic patients, with AVR planned once symptoms develop
- Recent advances in surgery may change the risk-to-benefit ratio

Method: Study Design and Patients

<u>RECOVERY</u> A prospective, multicenter, open-label, randomized trial to compare long-term clinical outcomes of early surgical AVR vs. conservative management in asymptomatic pts with very severe AS

Inclusion	Exclusion		
 Age 20-80 years 	 Presence of symptoms (exertional dyspnea, syncope, or angina) 		
 Very severe AS (defined as AVA≤0.75cm² with peak aortic jet velocity ≥4.5m/s or mean trans-aortic gradient ≥50mmHg) 	 LV ejection fraction <50% Significant aortic regurgitation Significant mitral valve disease 		
 Candidates for early surgery 	 Previous cardiac surgery 		
 Informed consent 	 Positive exercise test 		
Clinicaltrials.gov NCT01161732			

Method: Study Procedures

- Patients were randomly assigned on a 1:1 basis to early surgery or conventional treatment using a Web-based interactive response system
- In the early surgery group, AVR should be performed within 2 months of randomization
- Patients in the conventional treatment group were treated according to the current guidelines and referred for AVR if they became symptomatic, LV EF < 0.50 or an increase in peak aortic velocity > 0.5 m/s per year

Method: Endpoints

Hypothesis Early surgery would reduce the risk of cardiovascular mortality as compared with conservative management

End point	Sample size
 Primary end point* Operative mortality Cardiovascular death 	 Assumptions Event rate of 2% in early surgery vs. 16% in conventional group during minimum follow-up of 4
 Secondary end point* All-cause death Repeat aortic valve surgery Clinical thromboembolic event Hospitalization for CHF 	 years (Kang DH et al. Circulation 2010) - 80% Power at 2-sided significance level of 0.05 Estimated sample N=144

*occurred during 4-year follow-up period after enrollment of the last patient

Results: Study Flow

Clinicaltrials.gov NCT01161732

Results: Baseline Characteristics

Patient characteristics		Echocardiographic Findings			
	Conventional (n=72)	Early AVR (n=73)		Conventional (n=72)	Early AVR (n=73)
Age (years)	63±11	65±8	Peak AV jet velocity (m/s)	5.0±0.4	5.1±0.5
Male	34 (47%)	37 (51%)	Mean AV PG (mmHg)	63±12	64±14
Diabetes	7 (10%)	13 (18%)	Aortic valve area (CM ²)	0.64±0.09	0.63±0.09
Hypertension	39 (54%)	40 (55%)	LV mass index (g/m²)	134±31	136±38
Coronary disease	1 (2%)	5 (7%)	LV ejection fraction (%)	65±4	65±5
Previous stroke	3 (4%)	3 (4%)	Cause of AS		
Atrial fibrillation	6 (8%)	3 (4%)	Bicuspid	39 (54%)	49 (67%)
Creatinine (mg/dl)	0.8±0.2	0.8±0.2	Degenerative	26 (36%)	22 (30%)
EuroSCORE II (%)	0.9 ± 0.4	0.9±0.3	Rheumatic	7 (10%)	2 (3%)

Results: AVR Procedures

	Conventional Treatment (n=72)	Early Surgery (n=73)
Performance of AVR	53 (74%)	72 (99%)
Early surgery	2 (4%)	69 (96%)
Urgent surgery	9 (17%)	0 (0%)
Mechanical prosthesis	21 (40%)	36 (50%)
CABG	1 (2%)	5 (7%)
Replacement of aorta	8 (15%)	7 (10%)
Operative mortality	0 (0%)	0 (0%)
Stroke	0 (0%)	1 (1%)
Myocardial infarction	1 (2%)	0 (0%)
Reoperation	0 (0%)	0 (0%)

Results: End Points

	Conventional	Early surgery	Hazard ratio	P value
Primary end point (Operative or CV death)	11 (15.3%)	1 (1.4%)	0.09 (0.01-0.67)	0.003
Secondary end point				
 All-cause mortality 	15 (20.8%)	5 (6.8%)	0.33 (0.12-0.90)	0.030
 Thromboembolic events Stroke Myocardial infarction 	4 (5.6%) 3 1	1 (1.4%) 1 0	0.30 (0.04-2.31)	0.25
 Repeat AV surgery 	2 (2.8%)	0 (0%)	0.19 (0.10-8.00)	0.39
 CHF hospitalization 	8 (11.1%)	0 (0%)	0.05 (0.00-1.05)	0.054

Results: Primary Analysis

Results: Secondary Per-Protocol Analysis

Limitations

- Patients with very severe AS (aortic velocity > 4.5 m/s)
- Cross-over in 4%: Similar results in per-protocol analysis
- Selective performance of exercise test
- Younger patients with low operative risk and higher incidence of bicuspid AV: Our results cannot be directly applied to early TAVR for asymptomatic severe AS

Conclusions

Early surgical AVR (vs. conservative management) significantly reduced the rates of operative or cardiovascular death, and death from any cause in asymptomatic patients with very severe AS

The RECOVERY trial provides the evidence for early preemptive AVR

AHA 2019 Late Breaking Trial