
Hemodynamic Support for CHIP

CHIP: Updated Insight

Tae-Hyun Yang

Professor of Medicine/Cardiology

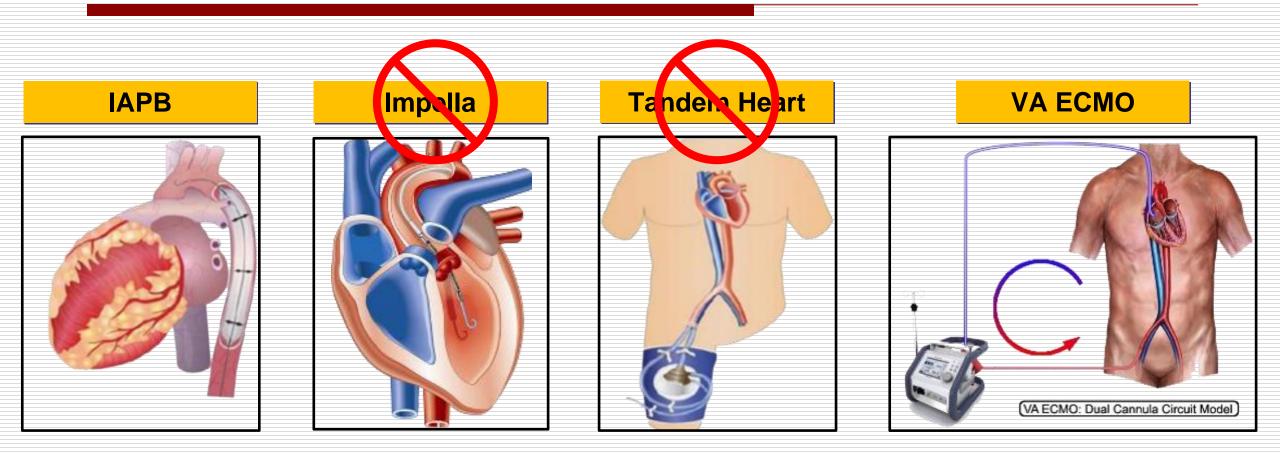
Inje University Busan Paik Hospital

CHIP (Complex, Higher-risk, and Indicated Patients)

- 1. Acute Coronary
- Syndrome
- 2. Prior CABG
- 3. Heart failure
- 4. Atrial fibrillation
- 5. Advanced age
- 6. Diabetes
- 7. Renal failure
- 8. COPD
- 9. Peripheral vascular disease

Patient Comorbidities/ Surgical Ineligibility

Hemodynamics

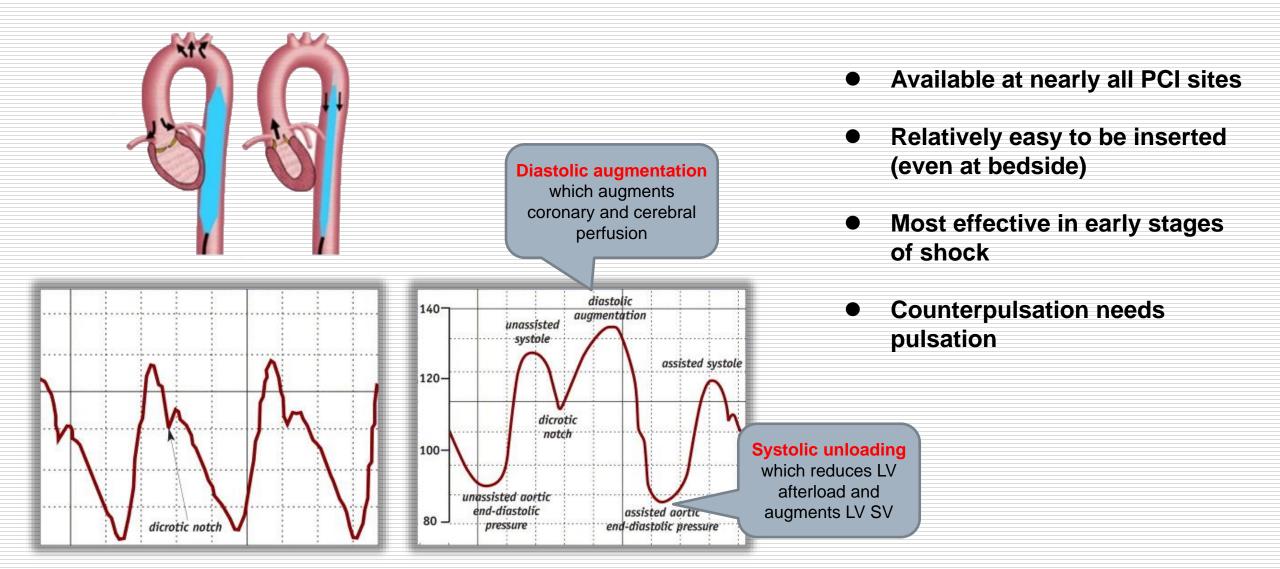

Low ejection fraction
 High filling pressures

Complexity of Coronary Anatomy

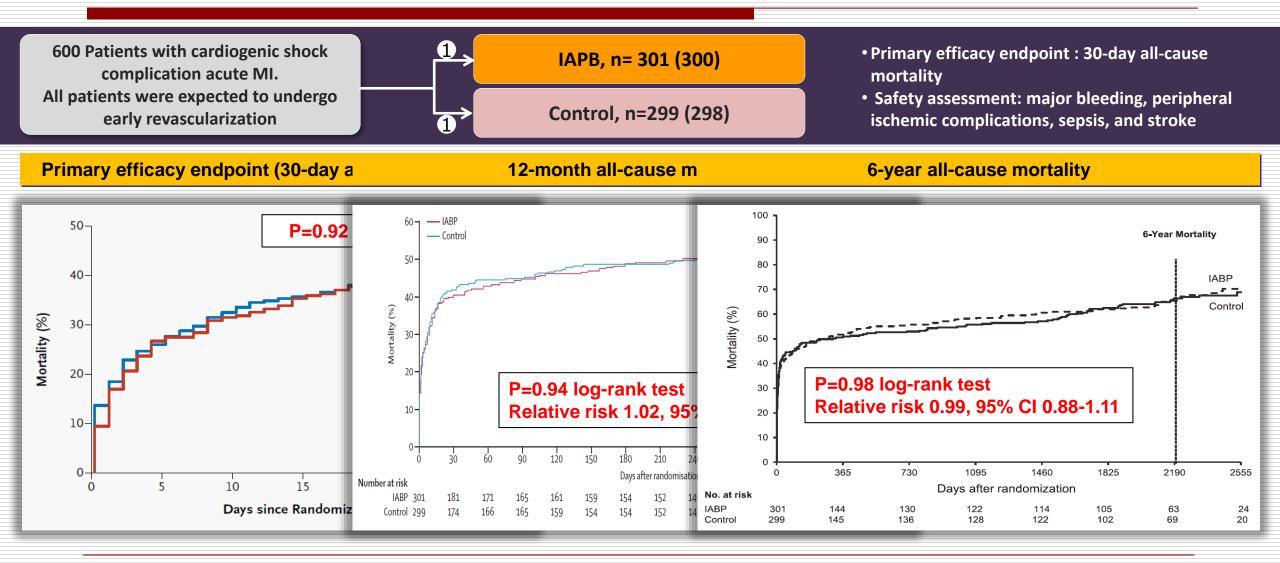
1. CTO

- 2. Bifurcation
- 3. Left Main
- 4. SVG
- 5. Thrombus
- 6. Calcification
- 7. Ostial lesions
- 8. Multi-vessel disease
 -) Small voss
- 9. Small vessel
- 10. Diffuse disease

LV Percutaneous Hemodynamic Support Devices



Comparison of MCS Devices


	IABP	IMPELLA	TANDEMHEART	VA-ECMO
Cardiac Flow	0.3-0.5 L/ min	1-5L/ min (Impella 2.5, Impella CP, Impella 5)	2.5-5 L/ min	3-7 L-min
Mechanism	Aorta	$LV \rightarrow AO$	$LA \rightarrow AO$	$RA \rightarrow AO$
Maximum implant days	Weeks	7 days	14 days	Weeks
Sheath size	7-8 Fr	13-14 Fr Impella 5.0 - 21 Fr	15-17 Fr Arterial 21 Fr Venous	14-16 Fr Arterial 18-21 Fr Venous
Femoral Artery Size	>4 mm	Impella 2.5 & CP - 5-5.5 mm Impella 5 - 8 mm	8 mm	8 mm
Cardiac synchrony or stable rhythm	Yes	No	No	No
Afterload	\downarrow	Ļ	↑	↑↑↑
MAP	↑ (↑ ↑	† ↑	↑ ↑
Cardiac Flow	1	↑ ↑	1 1	^
Cardiac Power	\uparrow	↑ ↑	1 1	^
LVEDP	\downarrow	$\downarrow\downarrow$	↓ ↓	\leftrightarrow
PCWP	\downarrow	$\downarrow\downarrow$	$\downarrow\downarrow$	\leftrightarrow
LV Preload		$\downarrow\downarrow$	$\downarrow\downarrow$	\downarrow
Coronary Perfusion	\uparrow	1		
Myocardial oxygen demand	Ļ	↓↓	$\leftrightarrow \downarrow$	\leftrightarrow

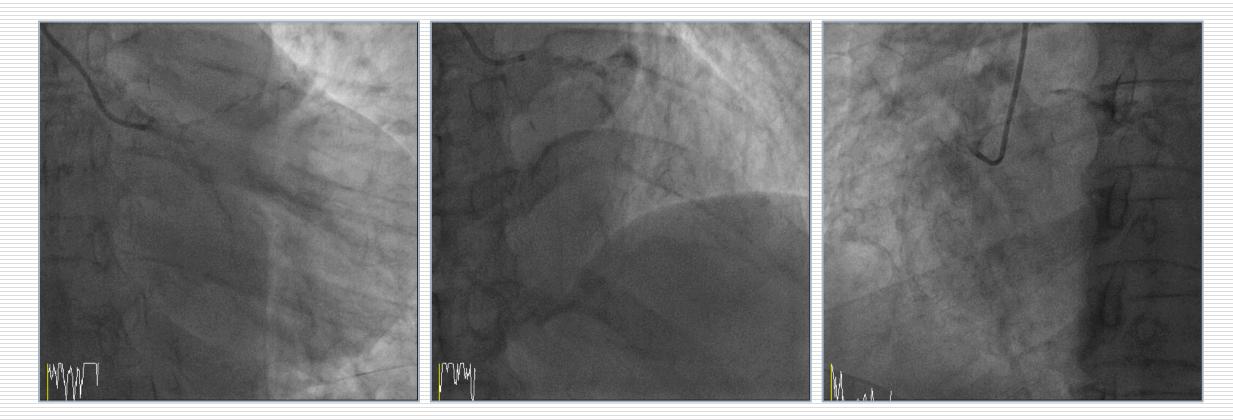
J Am Coll Cardiol Intv 2016;9:871-883

IAPB

Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock (IAPB-SHOCK 2 Trial)

New Engl J Med 2012;367:1287-1296, Lancet 2013; 382:1638-1645, Circulation 2019;139:395-403.

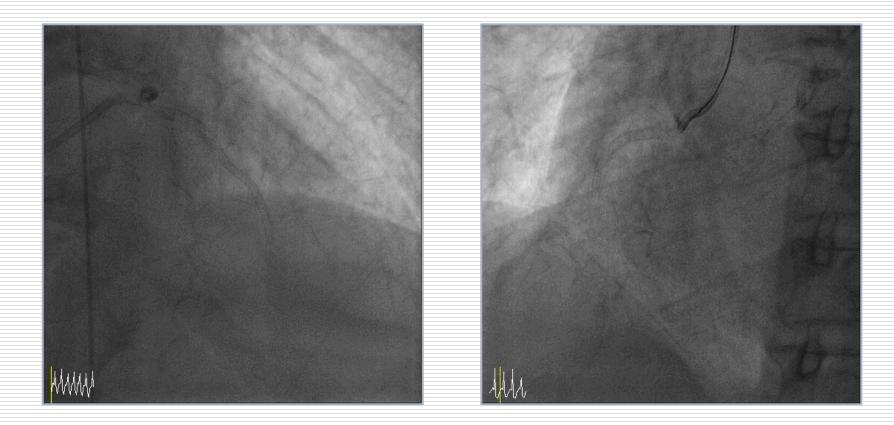
Meta-Analysis on the Risk of In-hospital Mortality Between IABP vs. Medical Therapy in AMICS


	IABP	•	Contr	ol		Risk ratio	Risk ratio
Subgroup/study	Events	Total	Events	Total	Weight	M-H, Random, 95%CI	M-H, Random, 95%CI
Observational studies							
Anderson, 1997 (GUSTO-I)	13	21	7	16	2.3%	1.41 [0.74, 2.71]	
Sanborn, 2000 (SHOCK Registry)	120	304	30	79	7.0%	1.04 [0.76, 1.42]	_ _
Barron, 2001 (NRMI-2)	956	2035	401	955	15.9%	1.12 [1.02, 1.22]	-
Vis, 2007 (AMC CS)	93	199	26	93	5.9%	1.67 [1.17, 2.39]	— -
Gu, 2010	13	43	25	48	3.3%	0.58 [0.34, 0.99]	
Stub, 2011	108	251	54	159	8.7%	1.27 [0.98, 1.64]	
Zeymer, 2011 (EHS-PCI Registry)	92	162	177	491	11.8%	1.58 [1.32, 1.88]	
Zeymer, 2013 (ALKK-PCI Registry)	212	487	534	1426	14.4%	1.16 [1.03, 1.31]	-=-
Dziewierz, 2014 (EUROTRANSFER Registry)	10	30	8	21	1.8%	0.88 [0.42, 1.84]	
Kim, 2015 (KAMIR)	242	425	387	789	15.0%	1.16 [1.04, 1.29]	
Suzuki, 2015	31	84	5	35	1.4%	2.58 [1.10, 6.09]	
Subtotal (95%CI)		4041		4112	87.5%	1.21 [1.08, 1.36]	◆
Total events	1890		1654				
Heterogeneity: $Tau^2 = 0.02$, $\chi^2 = 27.18$, df = 10	(P = 0.002)	(); $I^2 =$	63%				
Test for overall effect: $Z = 3.36 (P = 0.0008)$							
RCTs							
Prondinsky, 2010 (IABP-SHOCK I)	7	19	6	21	1.3%	1.29 [0.53, 3.16]	
Thiele, 2012 (IABP-SHOCK II)	119	300	123	298	11.2%	0.96 [0.79, 1.17]	- - -
Subtotal (95%CI)		319		319	12.5%	0.97 [0.81, 1.18]	. ◆
Total events	126		129	515			
Heterogeneity: Tau ² = 0.00, χ^2 = 0.39, df = 1 (A		² – 0%					
Test for overall effect: $Z = 0.27$ ($P = 0.78$)	= 0.00), 1	- 0 70					
105(1010)(1010)(1010)(12) = 0.27(7 = 0.70)							
Total (95%CI)		4360		4431	100.00%	1.18 [1.06, 1.32]	
Total events	2016		1783				
Heterogeneity: $Tau^2 = 0.02$, $\chi^2 = 31.29$, df = 12		2); $I^2 =$				L	
Test for overall effect: $Z = 3.12$ ($P = 0.002$)						0.1 0	
Test for subgroup differences: $\chi^2 = 3.83$, df = 1	(P = 0.05)	$J^2 = 7$	3.9%			Fa	vours IABP Favours control
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	v = 0.00)	/.					

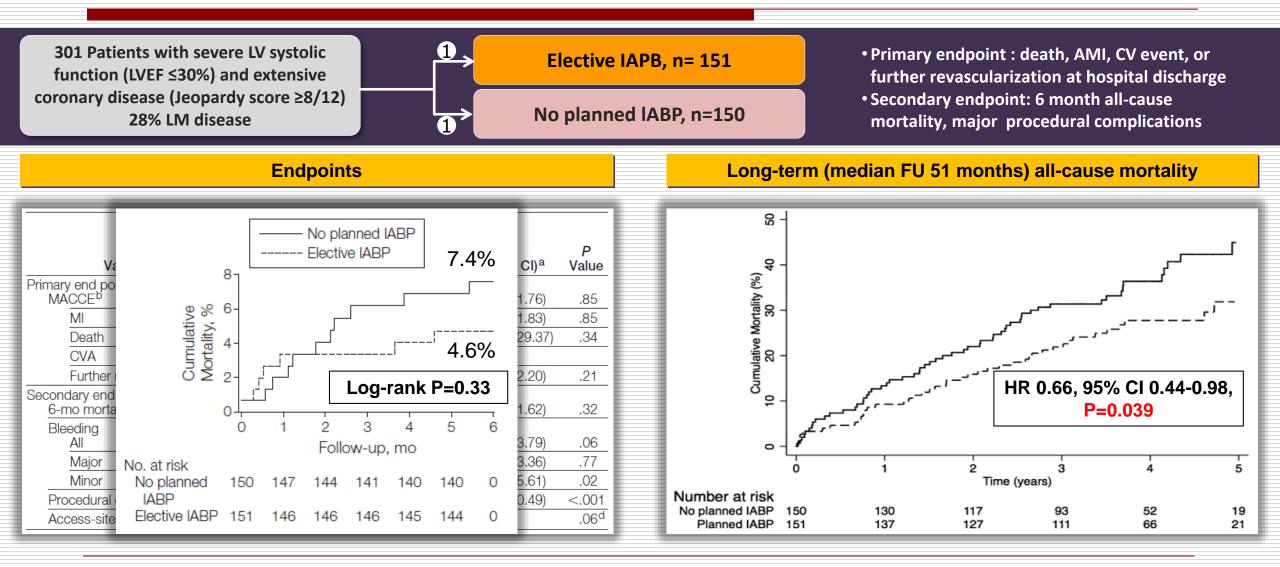
Meta-Analysis on the Risk of Late Mortality Between IABP vs. Medical Therapy in AMICS

	IABP		Contr	ol		Risk ratio	Risk ratio	
Subgroup/study	Events	Total	Events	Total	Weight	M-H, Random, 95%CI	M-H, Random, 95%CI	
Observational studies								
Gu, 2010	21	43	36	48	18.8%	0.65 [0.46, 0.92]	_ _	
Dziewierz, 2014	10	30	9	21	9.7%	0.78 [0.38, 1.58]		
Kunadian, 2015 (BCIS Registry)	1547	2971	1186	3149	26.6%	1.38 [1.31, 1.46]		
Subtotal (95%CI)		3044		3218	55.1%	0.92 [0.51, 1.67]		
Total events	1578		1231					
Heterogeneity: $Tau^2 = 0.23$, $\chi^2 = 20.01$,	, df = 2 (<i>P</i> <	0.0001	.); <i>I</i> ² = 90	0%				
Test for overall effect: $Z = 0.28$ ($P = 0.7$								
RCTs								
French, 2003 (SHOCK Trial)	74	132	7	20	11.4%	1.60 [0.87, 2.97]		
Prondinsky, 2010 (IABP-SHOCK I)	9	16	6	16	8.7%	1.50 [0.70, 3.23]		
Thiele, 2012 (IABP-SHOCK II)	155	299	152	296		1.01 [0.86, 1.18]		
Subtotal (95%CI)		447		332	44.9%	1.16 [0.86, 1.58]		
Total events	238		165			2 / 2	•	
Heterogeneity: Tau ² = 0.03, χ^2 = 2.93,	df = 2 (P = 0)	0.23): <i>I</i>	$^{2} = 32\%$					
Test for overall effect: $Z = 0.96$ ($P = 0.3$	•		- 52 / 6					
	-							
Total (95%CI)		3491		3550	100.0%	1.08 [0.82, 1.41]		
Total events	1816		1396					
Heterogeneity: $Tau^2 = 0.07$, $\chi^2 = 32.56$,		0.0000	(1); $I^2 = 8$	5%			0.1 0.2 0.5 1 2 5	10
Test for overall effect: $Z = 0.52$ ($P = 0.6$	-						Favours IABP Favours control	
Test for subgroup differences: $\chi^2 = 0.48$	8, df = 1 (<i>P</i> =	= 0.49),	$I^2 = 0\%$					

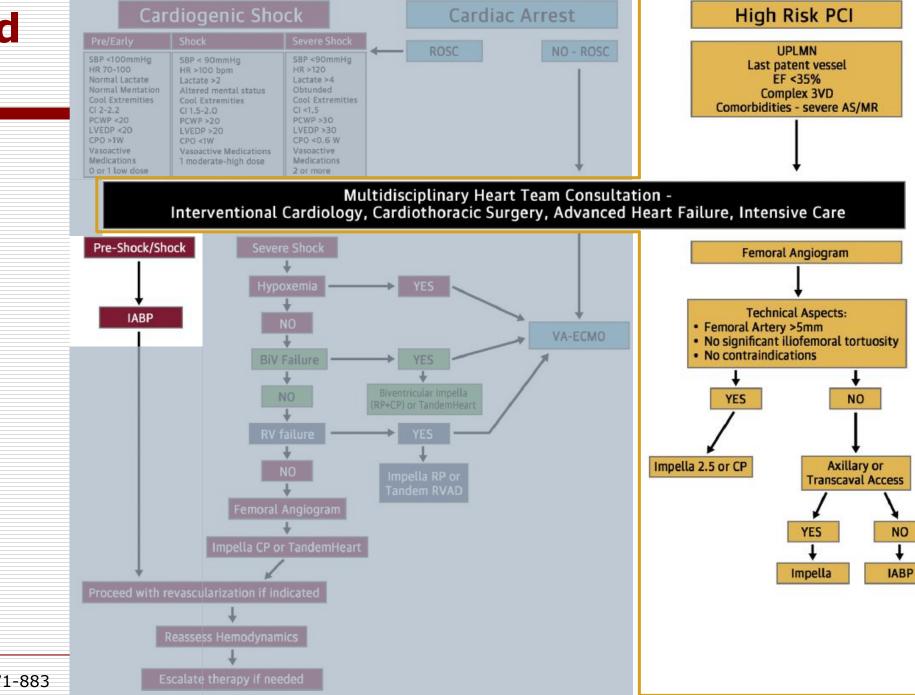
World J Cardiol 2016;8:98-111


Case: 81-Year-Old Female

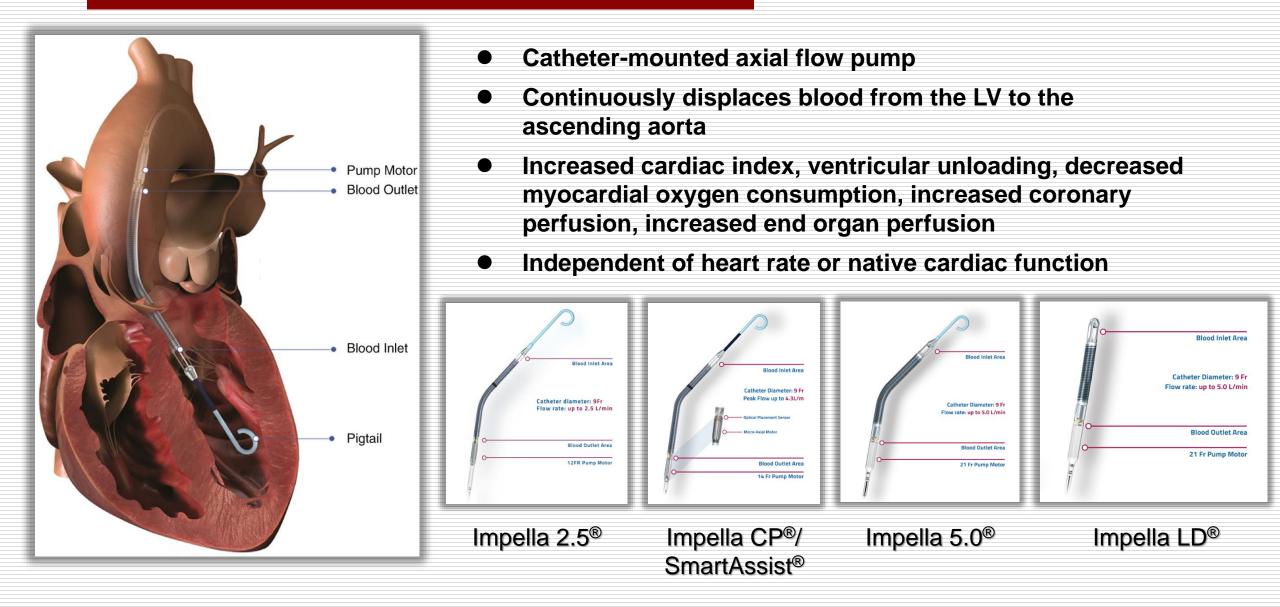
- BP: 110/60 mmHg, HR: 75 bpm
- Unstable angina
- LVEF = 29%


- 3-vessel CAD with unprotected LM disease
- Severe calcification
- Concomitant CTO

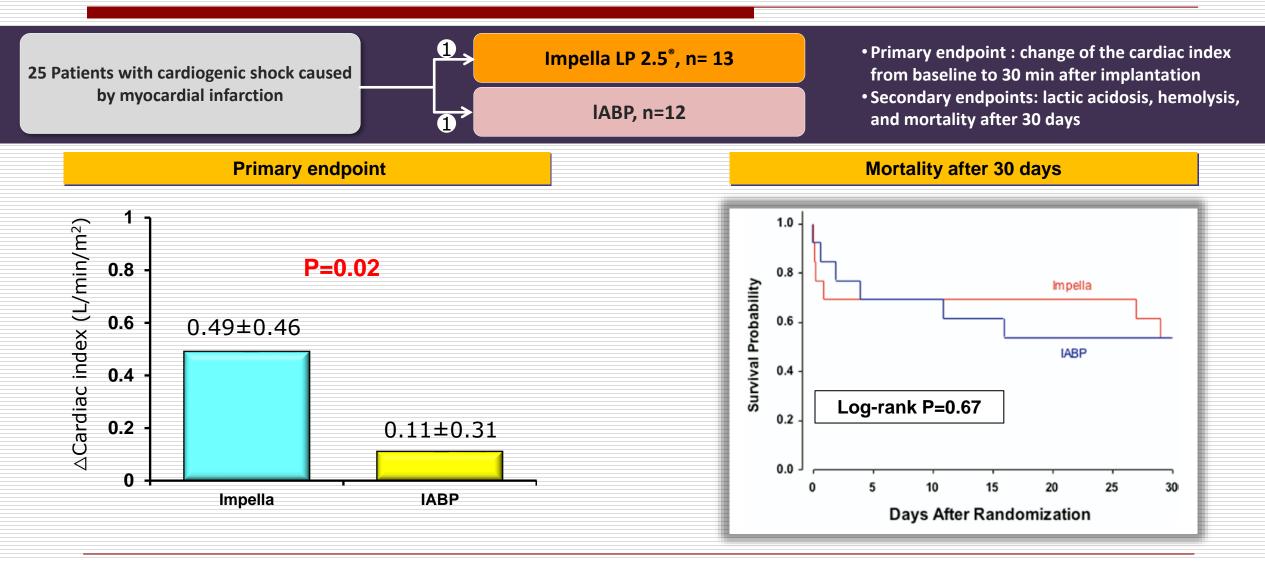
Case: 81-Year-Old Female: Elective IABP and PCI


- Elective IABP support
- Trans-radial 6F
- Child-mother technique (Heartfail)
- Buddy-wire cutting

Elective Intra-aortic Balloon Support During High-Risk Percutaneous Coronary Intervention (BCIS-1 Trial)


JAMA 2010;304:867-874, Circulatin 2013;127:207-212.

In Whom and When?

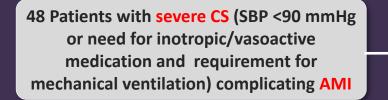


J Am Coll Cardiol Intv 2016;9:871-883

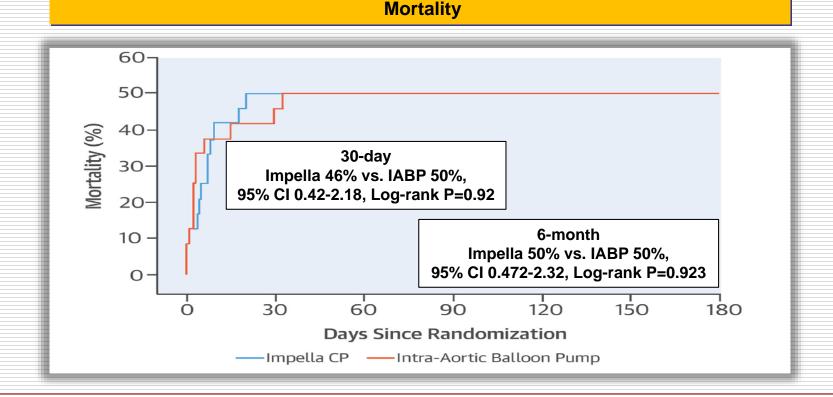
Impella

Impella 2.5 Provides A Better Hemodynamic Support Than IABP in AMI Cardiogenic Shock (ISAR-SHOCK)

J Am Coll Cardiol 2008;52:1584-1588


No Mortality Benefit with Impella CP in Comparison with IABP in AMI Cardiogenic Shock (Impress Trial)

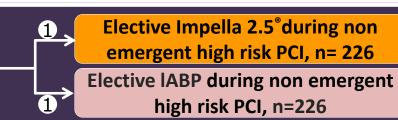
Impella CP[®], n= 24


IABP, n=24

1

1

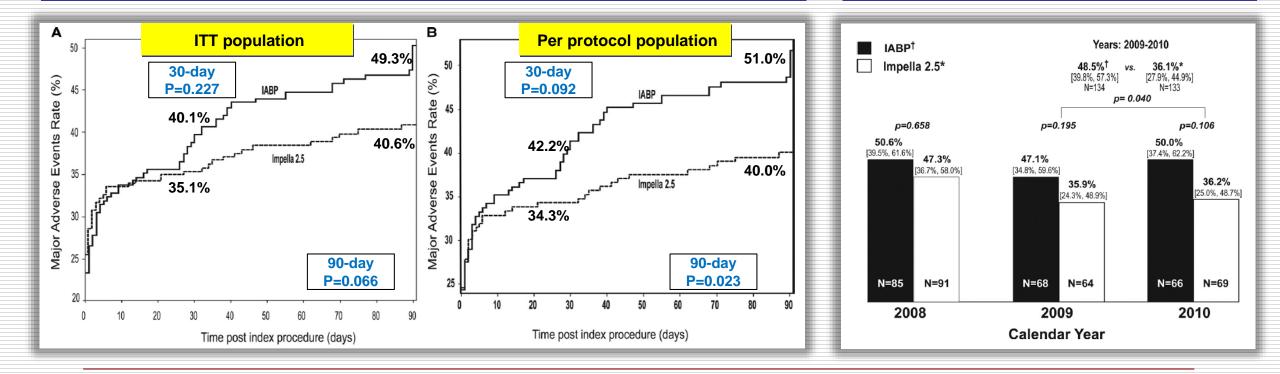
Primary endpoint : 30-day all-cause mortality
Secondary endpoint: 6-month all-cause mortality


Meta-Analysis on the Risk of In-Hospital Mortality Between LVAD vs. IABP in AMICS

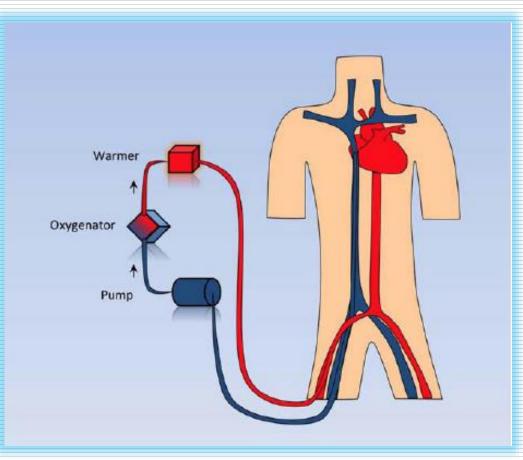
	PLVA	Ds	IABP			Risk ratio	Risk ratio
Subgroup/study	Events	Total	Events	Total \	Weight	M-H, Random, 95%CI	M-H, Random, 95%CI
Observational studies							
Schwartz, 2012	13	26	17	50	14.6%	1.47 [0.85, 2.54]	
Shah, 2012	2	4	6	13	3.3%	1.08 [0.35, 3.40]	e
Manzo-Silberman, 2013	27	35	30	43	60.8%	1.11 [0.85, 1.44]	
Subtotal (95%CI)		65		106	78.7%	1.16 [0.92, 1.47]	◆
Total events	42		53				
Heterogeneity: Tau ² = 0.00, χ^2 = 0	0.95, df = 2 (A	² = 0.62); $I^2 = 0\%$				
Test for overall effect: $Z = 1.27$ (P	-		-				
RCTs							
Thiele, 2005	9	21	9	20	9.0%	0.95 [0.48, 1.90]	
Burkoff, 2006	9	19	5	14	6.0%	1.33 [0.57, 3.10]	
Seyfarff, 2008 (ISAR-SHOCK)	6	13	6	13	6.3%	1.00 [0.44, 2.29]	
Cubtotal (OE0/CT)		53		47	21.3%	1.06 [0.68, 1.66]	\bullet
Subtotal (95%CI)							
Total events	24		20				
		P = 0.83					
Total events	0.38, df = 2 (/	P = 0.83					
Total events Heterogeneity: Tau ² = 0.00, χ^2 = 0 Test for overall effect: Z = 0.26 (P	0.38, df = 2 (/				100.0%	1 14 [0 97 1 41]	
Total events Heterogeneity: Tau ² = 0.00, χ^2 = 0 Test for overall effect: Z = 0.26 (<i>P</i> Total (95%CI)	0.38, df = 2 (A 2 = 0.80)	P = 0.83 118); $I^2 = 0\%$	153	100.0%	1.14 [0.93, 1.41]	
Total events Heterogeneity: Tau ² = 0.00, χ^2 = 0 Test for overall effect: Z = 0.26 (P Total (95%CI) Total events	0.38, df = 2 (A ' = 0.80) 66	118); <i>I</i> ² = 0%	153	100.0%	1.14 [0.93, 1.41]	
Total events Heterogeneity: Tau ² = 0.00, χ^2 = 0 Test for overall effect: Z = 0.26 (P	0.38, df = 2 (A 2 = 0.80) 66 1.40, df = 5 (A	118); <i>I</i> ² = 0%	153	100.0%		0.2 0.5 1 2 5

World J Cardiol 2016;8:98-111

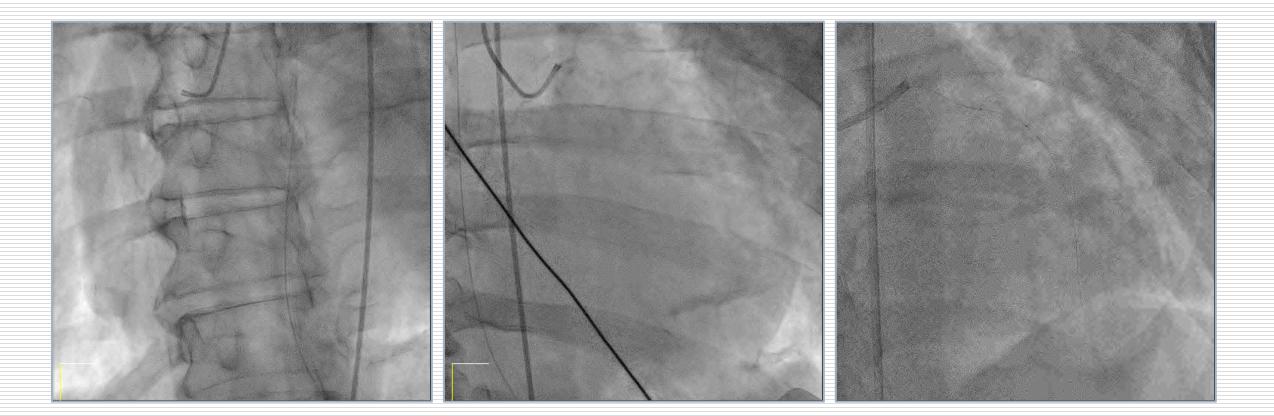
Elective Impella 2.5 vs. IAPB in Patients Undergoing High-Risk Coronary Intervention (PROTECT II Study)


452 Patients with complex 3-vessel disease or unprotected LM disease and severely depressed LV function (LVEF ≤30% or 35%)

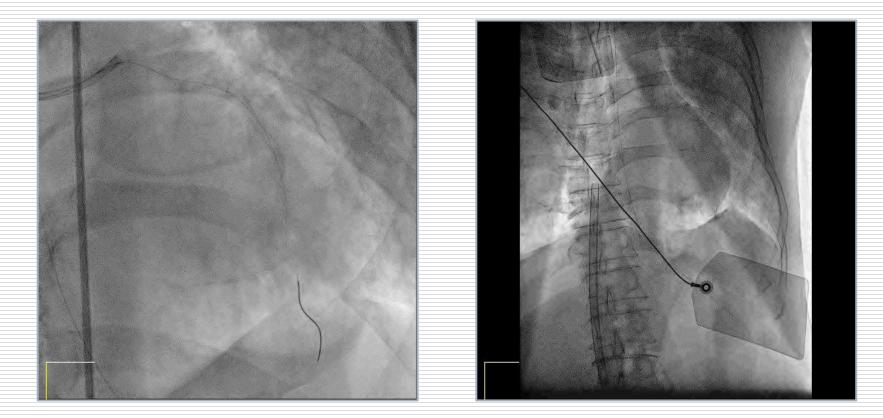
• Primary endpoint : 30-day MACE (death, AMI, stroke or TIA, any repeat revasc., cardiac or vascular op, AKI, severe intraprocedural hypotension, CPR, cardioversion for VT, AR, angiographic failure of PCI)


MACE

90-day MACE over the course of the trial


Circulation 2012;126:1717-1727

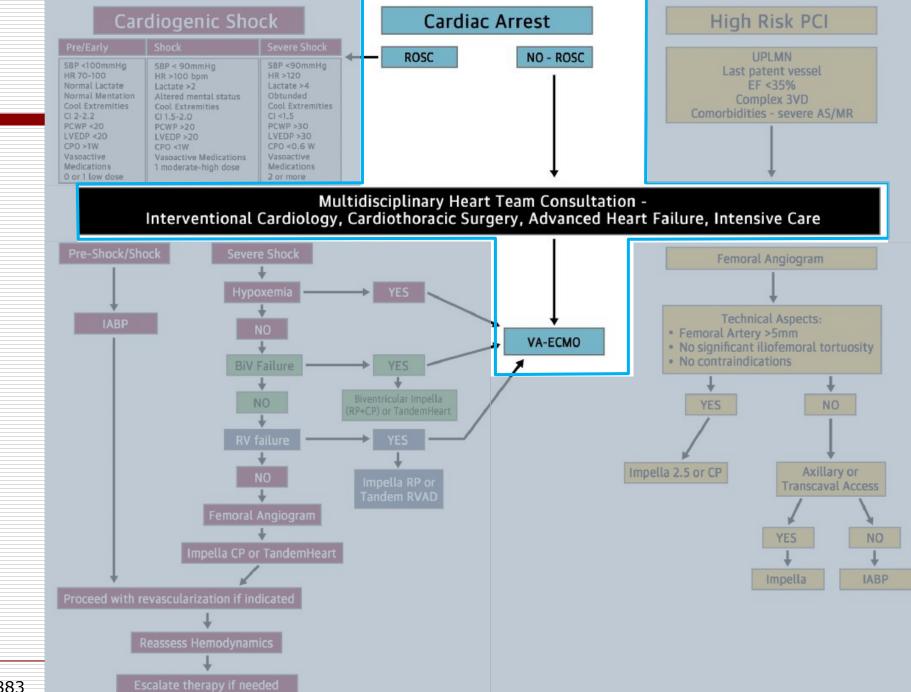
VA ECMO


- VA-ECMO withdraws venous blood and returns it to the arterial system via a centrifugal pump
- Providing gas exchange, oxygenation, and circulatory support
- Useful in patients with cardiogenic shock and impaired oxygenation
- Reducing biventricular preload and increasing mean arterial pressure
- May increase LV afterload, thereby often needing LV venting strategies

Case: 69-Year-Old Male

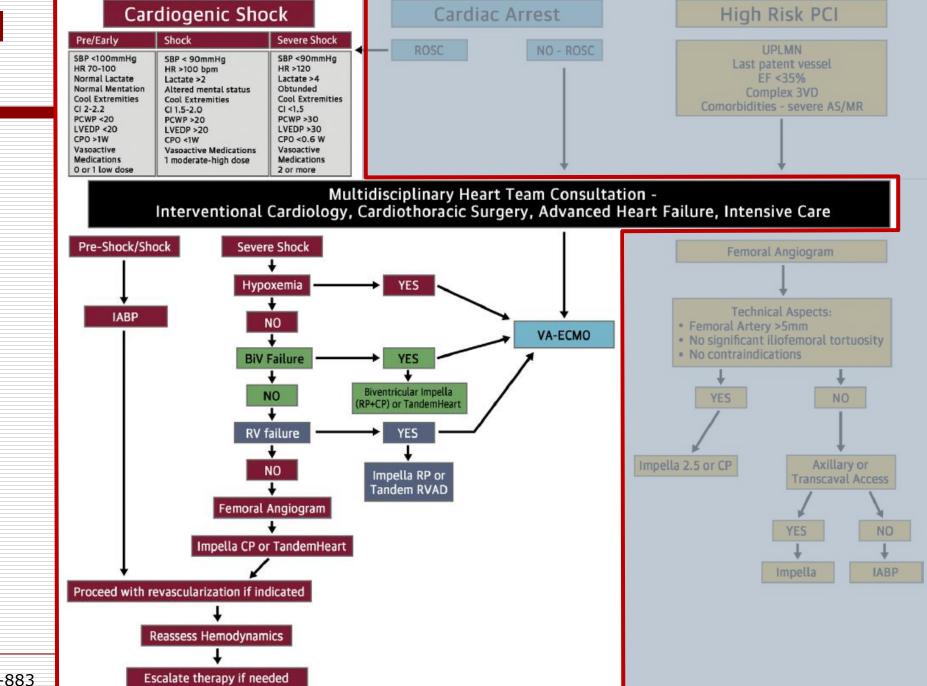
- Acute STEMI
- Aborted cardiac arrest (VF)
- BP : 80/50 mmHg, HR: 115 bpm on norepinephrine
- LVEF = 25-30%
- Thrombotic occlusion at pLAD
- Concomitant CTO at mRCA

Case: 69-Year-Old Male: Emergent VA ECMO and Primary PCI

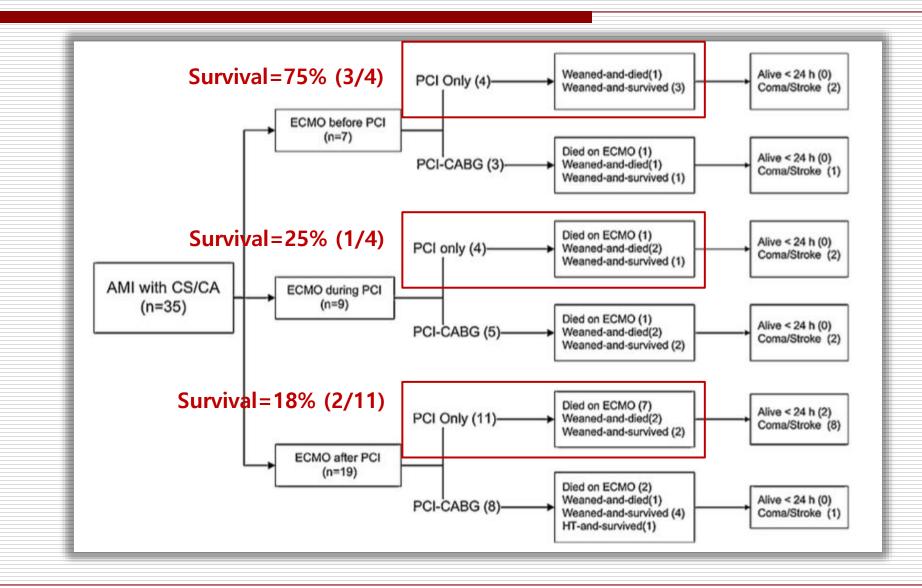


- Emergent VA ECMO
- Trans-femoral 7F
- DES #2

Outcomes of VA-ECMO by Cardiac Indication


Reference	Population	Design	Duration (days)	Key Results	
Post-cardiotomy					
Rastan et al. 2010 (Online Ref. 1)	N = 517, refractory shock, mixed procedures	Prospective cohort, multicenter	3.3 ± 2.9	Weaned: 63% In-hospital mortality: 75% Survival: 6 months 18%, 1 yr 17%, 5 yrs 14%	
Biancari et al. 2017 (Online Ref. 2)	N = 148, shock or respiratory failure after isolated CABG	Retrospective cohort, multicenter	6.4 ± 5.6	Weaned: 49% In-hospital mortality: 64% Survival: 1 yr 31%, 2 yrs 28%, 3 yrs 26%	
Post-transplantation					
D'Alessandro et al. 2010 (Online Ref. 3)	N = 54, recipients with early graft failure for any cause	Retrospective cohort, single-center	7 ± 3	Weaned: 67% In-hospital mortality: 50% Survival: 1 yr 73%	
Marasco et al. 2010 (Online Ref. 4)	N = 39, recipients with primary graft failure	Retrospective cohort, single-center	$\textbf{6.8} \pm \textbf{2.6}$	Weaned: 87% In-hospital mortality: 26% Survival: 1 yr 73%	
CS					
Xie et al. 2015 (Online Ref. 5)	N= 1,199 (22 studies), CS or CA	Meta-analysis	NR	In-hospital mortality: 60% (95% Cl: 53%-66%) Survival: 3 months 56%, 1 yr 54% Survival at 1 month CS 53% vs. CA 36%	
Dangers et al. 2017 (Online Ref. 6)	N = 105, ADHF	Prospective cohort, single-center	NR	Survival: 1 yr 42% (many received a transplant)	
Myocarditis					
Cheng et al. 2014 (Online Ref. 7)	N = 170, acute myocarditis	Meta-analysis	NR	In-hospital mortality: 33% (95% CI: 26%-41%)	
Cardiac arrest					
Maekawa et al. 2013 (Online Ref. 8)	$N=$ 53, out-of-hospital CA with CPR $>\!20$ min	Prospective cohort, propensity matched	NR	Survival to discharge: ECMO 38% vs. CPR 13% ($p = 0.09$) Survival: 3-month. ECMO 38% vs. CPR 8% ($p = 0.04$)	
Choi et al. 2016 (Online Ref. 9)	N = 320, out-of-hospital CA in South Korea	Retrospective cohort, propensity matched	NR	Survival to discharge: ECMO 18% vs. CPR 16% (ECMO adjusted OR: 0.61; 95% CI: 0.39-0.94)	
Mixed					
Chang et al. 2016 (Online Ref. 10)	N = 4,227, supported in Taiwan	Retrospective cohort, administrative	2 ± 1	In-hospital mortality: 65% Survival: 1 month 40%, 1 yr 23%	
Batra et al. 2016 (Online Ref. 11)	N = 1,286, supported in New York state	Retrospective cohort, administrative	NR	In-hospital mortality: 54% Survival: 1 month 48%, 1 yr 38%	
Aso et al. 2016 (Online Ref. 12)	N = 5,263, supported in Japan	Retrospective cohort, administrative	NR	Weaned: 64% In-hospital mortality: 73% (shock 74%, PE 64%)	

In whom and When?


J Am Coll Cardiol Intv 2016;9:871-883

In Whom and When?

J Am Coll Cardiol Intv 2016;9:871-883

TIMING of VA-ECMO SUPPORT

Resuscitation 2013;84:940-945

Case: 58-Year-Old Male

Acute STEMI

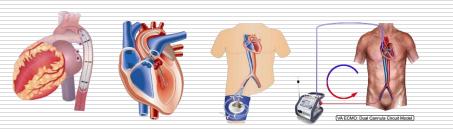
• LVEF = 30%

• Cardiogenic shock

- Thrombotic occlusion at ostial LAD
- BP : 80/50 mmHg, HR: 90 bpm on norepinephrine •
- Critical stenosis at LM shaft, ostial LCX, and mRCA

Case: 58-Year-Old Male: Emergent VA ECMO + IABP and Primary PCI

Meta-Analysis on the Risk of In-Hospital Mortality in Patients with AMI Complication Cardiogenic Shock


ECMO plus IAVP vs. IABP alone

ECMO plus IAVP vs. ECMO alone

	_						
	ECMO +	ABP	Contro	ol		Risk ratio	Risk ratio
Subgroup/study	Events	Total	Events	Total	Weight	M-H, Random, 95%CI	I M-H, Random, 95%CI
ECMO plus IABP <i>vs</i> IABP							
Sheu, 2010	18	46	18	25	53.4%	% 0.54 [0.35, 0.84]	
Tsao, 2012	10	32	18	26	32.6%	% 0.45 [0.25, 0.80]	
Perazzolo Marra, 2013	4	10	10	25	14.0%	% 1.00 [0.41, 2.46]	
Subtotal (95%CI)		88		76	100.0%	% 0.56 [0.40, 0.78]	
Total events	32		46				
Heterogeneity: Tau ² = 0.01, χ^2 = 2		= 2 (<i>P</i> = (7%			
Test for overall effect: $Z = 3.35$ (P =		10.000	1990 * 7 199				
	A MERICENTERS	,					
							0.1 0.2 0.5 1 2 5
							Favours ECMO + IABP Favours control


Summary

- In unstable patients undergoing high risk PCI, elective IABP (with/without VA-ECMO) can be used as first-line hemodynamic support device(s) here in Korea (where Impella is not available).
- In patients with pre-shock or shock at an early stage, IABP may be used.
- In patients with cardiogenic shock with severe LV failure, Impella or Tandem Heart are appropriate hemodynamic support devices. However, VA-ECMO is an inevitable choice in Korea. VA-ECMO and concomitant use of IABP may be helpful to decrease mortality compared with VA-ECMO alone.
- With current available data, we can not say there is an obvious survival benefit with hemodynamic support device in CHIP.

Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock (IAPB-SHOCK 2 Trial)

New Engl J Med 2012;367:1287-1296, Lancet 2013; 382:1638-1645, Circulation 2019;139:395-403.